These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 24211898)
1. Creep bulging deformation of intervertebral disc under axial compression. Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898 [TBL] [Abstract][Full Text] [Related]
2. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846 [TBL] [Abstract][Full Text] [Related]
3. Posterior motion preserving implants evaluated by means of intervertebral disc bulging and annular fiber strains. Heuer F; Schmidt H; Käfer W; Graf N; Wilke HJ Clin Biomech (Bristol); 2012 Mar; 27(3):218-25. PubMed ID: 21983522 [TBL] [Abstract][Full Text] [Related]
4. Bulging of the inner and outer annulus during in vivo axial loading of normal and degenerated discs. Kawchuk GN; Kaigle Holm AM; Ekström L; Hansson T; Holm SH J Spinal Disord Tech; 2009 May; 22(3):214-8. PubMed ID: 19412025 [TBL] [Abstract][Full Text] [Related]
5. The effect of nucleotomy and the dependence of degeneration of human intervertebral disc strain in axial compression. O'Connell GD; Malhotra NR; Vresilovic EJ; Elliott DM Spine (Phila Pa 1976); 2011 Oct; 36(21):1765-71. PubMed ID: 21394074 [TBL] [Abstract][Full Text] [Related]
6. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Wade KR; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692 [TBL] [Abstract][Full Text] [Related]
8. Recent advances in analytical modeling of lumbar disc degeneration. Natarajan RN; Williams JR; Andersson GB Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs. Koeller W; Meier W; Hartmann F Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843 [TBL] [Abstract][Full Text] [Related]
10. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489 [TBL] [Abstract][Full Text] [Related]
11. Bulging of lumbar intervertebral discs: non-contacting measurements of anatomical specimens. Stokes IA J Spinal Disord; 1988; 1(3):189-93. PubMed ID: 2980136 [TBL] [Abstract][Full Text] [Related]
12. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. MacLean JJ; Owen JP; Iatridis JC J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060 [TBL] [Abstract][Full Text] [Related]
13. "Surprise" Loading in Flexion Increases the Risk of Disc Herniation Due to Annulus-Endplate Junction Failure: A Mechanical and Microstructural Investigation. Wade KR; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2015 Jun; 40(12):891-901. PubMed ID: 25803222 [TBL] [Abstract][Full Text] [Related]
15. The morphology of acute disc herniation: a clinically relevant model defining the role of flexion. Veres SP; Robertson PA; Broom ND Spine (Phila Pa 1976); 2009 Oct; 34(21):2288-96. PubMed ID: 19934808 [TBL] [Abstract][Full Text] [Related]
16. The relation between intervertebral disc bulging and annular fiber associated strains for simple and complex loading. Heuer F; Schmidt H; Wilke HJ J Biomech; 2008; 41(5):1086-94. PubMed ID: 18187139 [TBL] [Abstract][Full Text] [Related]
17. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus: part II: how the annulus fails under hydrostatic pressure. Veres SP; Robertson PA; Broom ND Spine (Phila Pa 1976); 2008 Dec; 33(25):2711-20. PubMed ID: 19002077 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical effects of over lordotic curvature after spinal fusion on adjacent intervertebral discs under continuous compressive load. Wang W; Pei B; Pei Y; Li H; Lu S; Wu X; Wu N; Shi Z; Hao Y; Fan Y Clin Biomech (Bristol); 2020 Mar; 73():149-156. PubMed ID: 31986460 [TBL] [Abstract][Full Text] [Related]
19. Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model. Guehring T; Unglaub F; Lorenz H; Omlor G; Wilke HJ; Kroeber MW Eur Spine J; 2006 May; 15(5):597-604. PubMed ID: 16133080 [TBL] [Abstract][Full Text] [Related]
20. Mechanical initiation of intervertebral disc degeneration. Adams MA; Freeman BJ; Morrison HP; Nelson IW; Dolan P Spine (Phila Pa 1976); 2000 Jul; 25(13):1625-36. PubMed ID: 10870137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]