BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24211968)

  • 1. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering.
    Yang M; Mandal N; Shuai Y; Zhou G; Min S; Zhu L
    Biomed Mater Eng; 2014; 24(1):815-24. PubMed ID: 24211968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation of hydroxyapatite on Antheraea pernyi (A. pernyi) silk fibroin film.
    Yang M; Shuai Y; Zhou G; Mandal N; Zhu L
    Biomed Mater Eng; 2014; 24(1):731-40. PubMed ID: 24211958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation.
    Jiayao Z; Guanshan Z; Jinchi Z; Yuyin C; Yongqiang Z
    Microsc Res Tech; 2017 Mar; 80(3):305-311. PubMed ID: 27859871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells.
    Yang M; Shuai Y; Zhang C; Chen Y; Zhu L; Mao C; OuYang H
    Biomacromolecules; 2014 Apr; 15(4):1185-93. PubMed ID: 24666022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering.
    Nayak S; Talukdar S; Kundu SC
    Cell Tissue Res; 2012 Mar; 347(3):783-94. PubMed ID: 22327482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers.
    Du S; Zhang J; Zhou WT; Li QX; Greene GW; Zhu HJ; Li JL; Wang XG
    J Colloid Interface Sci; 2016 Sep; 478():316-23. PubMed ID: 27314644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Property studies on three-dimensional porous blended silk scaffolds].
    Rao J; Shen J; Quan D; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications.
    Mandal BB; Priya AS; Kundu SC
    Acta Biomater; 2009 Oct; 5(8):3007-20. PubMed ID: 19398392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preparation and cytocompatibility study of poly (epsilon-caprolactone)/silk sericin nanofibrous scaffolds].
    Li H; Li L; Qian Y; Cai K; Lu Y; Zhong L; Liu W; Yang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):305-9. PubMed ID: 21604491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of cell growth on exposure to silkworm and spider silk fibers.
    Hakimi O; Gheysens T; Vollrath F; Grahn MF; Knight DP; Vadgama P
    J Biomed Mater Res A; 2010 Mar; 92(4):1366-72. PubMed ID: 19353564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk gland sericin protein membranes: fabrication and characterization for potential biotechnological applications.
    Dash BC; Mandal BB; Kundu SC
    J Biotechnol; 2009 Dec; 144(4):321-9. PubMed ID: 19808068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.
    Nayak S; Dey T; Naskar D; Kundu SC
    Biomaterials; 2013 Apr; 34(12):2855-64. PubMed ID: 23357374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.
    Luan XY; Wang Y; Duan X; Duan QY; Li MZ; Lu SZ; Zhang HX; Zhang XG
    Biomed Mater; 2006 Dec; 1(4):181-7. PubMed ID: 18458403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications.
    Mandal BB; Ghosh B; Kundu SC
    Int J Biol Macromol; 2011 Aug; 49(2):125-33. PubMed ID: 21549749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material.
    Nayak S; Kundu SC
    J Biomed Mater Res A; 2014 Jun; 102(6):1928-40. PubMed ID: 23853114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application.
    Fu S; Yang L; Fan J; Wen Q; Lin S; Wang B; Chen L; Meng X; Chen Y; Wu J
    Colloids Surf B Biointerfaces; 2013 Jul; 107():167-73. PubMed ID: 23500727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.
    Xie H; Yang W; Chen J; Zhang J; Lu X; Zhao X; Huang K; Li H; Chang P; Wang Z; Wang L
    Adv Healthc Mater; 2015 Oct; 4(15):2195-205. PubMed ID: 26332703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on silk sericin and chitosan blend film: morphology and secondary structure characterizations.
    Srihanam P; Simcheur W; Srisuwan Y
    Pak J Biol Sci; 2009 Nov; 12(22):1487-90. PubMed ID: 20180324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications.
    Gopi D; Nithiya S; Shinyjoy E; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():194-200. PubMed ID: 22446767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.