These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2421214)

  • 1. The localization of fluoride-resistant acid phosphatase (FRAP) in the pelvic nerves and sacral spinal cord of rats.
    McMahon SB
    Neurosci Lett; 1986 Mar; 64(3):305-10. PubMed ID: 2421214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammation induced increase of fluoride resistant acid phosphatase (FRAP) activity in the spinal dorsal horn in rats.
    Glykys J; Guadama M; Marcano L; Ochoa E; Eblen-Zajjur A
    Neurosci Lett; 2003 Feb; 337(3):167-9. PubMed ID: 12536050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of primary afferent acid phosphatase expression following rerouting of afferents from muscle to skin in the adult rat.
    McMahon SB; Moore CE
    J Comp Neurol; 1988 Aug; 274(1):1-8. PubMed ID: 3417905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of acid phosphatase (FRAP) afferent terminal fields and of dorsal horn cell growth in the neonatal rat.
    Fitzgerald M; Vrbová G
    J Comp Neurol; 1985 Oct; 240(4):414-22. PubMed ID: 3880359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of glomeruli with fluoride-resistant acid phosphatase (FRAP)-containing terminals in the substantia gelatinosa of the rat.
    Ribeiro-Da-Silva A; Castro-Lopes JM; Coimbra A
    Brain Res; 1986 Jul; 377(2):323-9. PubMed ID: 3730867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of cutaneous afferents by fluoride-resistant acid phosphatase (FRAP)-active terminals in the rat substantia gelatinosa rolandi.
    Knyihár E; Csillik B
    Acta Neurol Scand; 1976 Mar; 53(3):217-25. PubMed ID: 1266568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents.
    Silverman JD; Kruger L
    Somatosens Res; 1988; 5(3):219-46. PubMed ID: 3128853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoride-resistant acid phosphatase (FRAP)-positive afferent terminals make synaptic contact with interneuronal soma in the substantia gelatinosa of the mouse spinal dorsal horn.
    Hiura A; Nasu F; Kuwahara M; Ishizuka H
    Okajimas Folia Anat Jpn; 1997 Aug; 74(2-3):109-13. PubMed ID: 9341296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons.
    Knyihár-Csillik E; Bezzegh A; Böti S; Csillik B
    J Histochem Cytochem; 1986 Mar; 34(3):363-71. PubMed ID: 3005391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase.
    Roppolo JR; Nadelhaft I; de Groat WC
    J Comp Neurol; 1985 Apr; 234(4):475-88. PubMed ID: 3988996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord.
    Swett JE; Woolf CJ
    J Comp Neurol; 1985 Jan; 231(1):66-77. PubMed ID: 3968229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral projections and neuropeptide coexistence in a subpopulation of fluoride-resistant acid phosphatase reactive spinal primary sensory neurons.
    Dalsgaard CJ; Ygge J; Vincent SR; Ohrling M; Dockray GJ; Elde R
    Neurosci Lett; 1984 Sep; 51(1):139-44. PubMed ID: 6096769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vasoactive intestinal polypeptide increases in areas of the dorsal horn of the spinal cord from which other neuropeptides are depleted following peripheral axotomy.
    Shehab SA; Atkinson ME
    Exp Brain Res; 1986; 62(2):422-30. PubMed ID: 2423358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.
    Vizzard MA; Erdman SL; Erickson VL; Stewart RJ; Roppolo JR; De Groat WC
    J Comp Neurol; 1994 Jan; 339(1):62-75. PubMed ID: 8106662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental alterations in nociceptive threshold, immunoreactive calcitonin gene-related peptide and substance P, and fluoride-resistant acid phosphatase in neonatally capsaicin-treated rats.
    Hammond DL; Ruda MA
    J Comp Neurol; 1991 Oct; 312(3):436-50. PubMed ID: 1721077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping and plasticity of acid phosphatase afferents in the rat dorsal horn.
    Devor M; Claman D
    Brain Res; 1980 May; 190(1):17-28. PubMed ID: 6155166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do central terminals of intact myelinated primary afferents sprout into the superficial dorsal horn of rat spinal cord after injury to a neighboring peripheral nerve?
    Shehab SA; Spike RC; Todd AJ
    J Comp Neurol; 2004 Jun; 474(3):427-37. PubMed ID: 15174085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcitonin gene-related peptide in primary afferent neurons of rat: co-existence with fluoride-resistant acid phosphatase and depletion by neonatal capsaicin.
    Carr PA; Yamamoto T; Nagy JI
    Neuroscience; 1990; 36(3):751-60. PubMed ID: 2234408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat.
    Cervero F; Connell LA
    J Comp Neurol; 1984 Nov; 230(1):88-98. PubMed ID: 6096416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of spinal projection of primary nociceptive neurones in the rat.
    Kovács A; Ferencsik M
    Acta Morphol Hung; 1986; 34(3):187-94. PubMed ID: 3037858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.