These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 24212343)
1. Separating the contribution of the upper and lower mesophyll to photosynthesis in Zea mays L. leaves. Long SP; Farage PK; Bolhár-Nordenkampf HR; Rohrhofer U Planta; 1989 Feb; 177(2):207-16. PubMed ID: 24212343 [TBL] [Abstract][Full Text] [Related]
2. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves. Retta M; Ho QT; Yin X; Verboven P; Berghuijs HNC; Struik PC; Nicolaï BM Plant Sci; 2016 May; 246():37-51. PubMed ID: 26993234 [TBL] [Abstract][Full Text] [Related]
3. Extreme undersaturation in the intercellular airspace of leaves: a failure of Gaastra or Ohm? Rockwell FE; Holbrook NM; Jain P; Huber AE; Sen S; Stroock AD Ann Bot; 2022 Sep; 130(3):301-316. PubMed ID: 35896037 [TBL] [Abstract][Full Text] [Related]
4. Assessing the CO Márquez DA; Stuart-Williams H; Cernusak LA; Farquhar GD New Phytol; 2023 May; 238(4):1446-1460. PubMed ID: 36751879 [TBL] [Abstract][Full Text] [Related]
5. A three-dimensional stomatal CO2 exchange model including gaseous phase and leaf mesophyll separated by irregular interface. Aalto T; Vesala T; Mattila T; Simbierowicz P; Hari P J Theor Biol; 1999 Jan; 196(1):115-28. PubMed ID: 9892560 [TBL] [Abstract][Full Text] [Related]
6. Does lateral gas diffusion in leaves matter? Morison JI; Lawson T Plant Cell Environ; 2007 Sep; 30(9):1072-85. PubMed ID: 17661748 [TBL] [Abstract][Full Text] [Related]
7. Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C Pathare VS; Koteyeva N; Cousins AB New Phytol; 2020 Jan; 225(1):169-182. PubMed ID: 31400232 [TBL] [Abstract][Full Text] [Related]
8. Relationship between stomatal conductance and light intensity in leaves of Zea mays L., derived from experiments using the mesophyll as shade. Raschke K; Hanebuth WF; Farquhar GD Planta; 1978 Jan; 139(1):73-7. PubMed ID: 24414109 [TBL] [Abstract][Full Text] [Related]
9. Mesophyll conductance in Zea mays responds transiently to CO Kolbe AR; Cousins AB New Phytol; 2018 Mar; 217(4):1463-1474. PubMed ID: 29220090 [TBL] [Abstract][Full Text] [Related]
10. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
11. Effects of the mesophyll on stomatal responses in amphistomatous leaves. Mott KA; Peak D Plant Cell Environ; 2018 Dec; 41(12):2835-2843. PubMed ID: 30073677 [TBL] [Abstract][Full Text] [Related]
12. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period]. Schulze E-; Lange OL; Koch W Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256 [TBL] [Abstract][Full Text] [Related]
13. Humidity gradients in the air spaces of leaves. Wong SC; Canny MJ; Holloway-Phillips M; Stuart-Williams H; Cernusak LA; Márquez DA; Farquhar GD Nat Plants; 2022 Aug; 8(8):971-978. PubMed ID: 35941216 [TBL] [Abstract][Full Text] [Related]
14. [CO2-exchange in amphistomatic leaves : 2. A comparison between the diffusive CO2-exchange of both leaf surfaces of zea mays and the viscous flow of volume in the porometer]. Domes W; Bertsch A Planta; 1969 Mar; 86(1):84-91. PubMed ID: 24515745 [TBL] [Abstract][Full Text] [Related]
15. Shorting the metaphorical circuit: vascular partitioning and stomatal patchiness can create apparent unsaturation and CO Rockwell FE New Phytol; 2024 Sep; ():. PubMed ID: 39238150 [TBL] [Abstract][Full Text] [Related]
16. Exploring the potential of Δ17O in CO2 for determining mesophyll conductance. Adnew GA; Pons TL; Koren G; Peters W; Röckmann T Plant Physiol; 2023 May; 192(2):1234-1253. PubMed ID: 36943765 [TBL] [Abstract][Full Text] [Related]
17. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Xiong D; Douthe C; Flexas J Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546 [TBL] [Abstract][Full Text] [Related]
18. Compartmental distribution and redistribution of abscisic acid in intact leaves : II. Model analysis. Slovik S; Hartung W Planta; 1992 Apr; 187(1):26-36. PubMed ID: 24177963 [TBL] [Abstract][Full Text] [Related]
19. Gas-exchange analysis of chloroplastic fructose-1,6-bisphosphatase antisense potatoes at different air humidities and at elevated CO(2). Muschak M; Willmitzer L; Fisahn J Planta; 1999 Jul; 209(1):104-11. PubMed ID: 10467036 [TBL] [Abstract][Full Text] [Related]
20. Partitioning of mesophyll conductance for CO Šantrůček J; Schreiber L; Macková J; Vráblová M; Květoň J; Macek P; Neuwirthová J Photosynth Res; 2019 Jul; 141(1):33-51. PubMed ID: 30806882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]