These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24212429)

  • 1. Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L.
    Bowsher CG; Hucklesby DP; Emes MJ
    Planta; 1989 Mar; 177(3):359-66. PubMed ID: 24212429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of Glc6P uptake and its subsequent oxidation within pea root plastids on nitrite reduction and glutamate synthesis.
    Bowsher CG; Lacey AE; Hanke GT; Clarkson DT; Saker LR; Stulen I; Emes MJ
    J Exp Bot; 2007; 58(5):1109-18. PubMed ID: 17220512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of the Enzymic Capacities and Transport Properties of Pea Root Plastids.
    Borchert S; Harborth J; Schunemann D; Hoferichter P; Heldt HW
    Plant Physiol; 1993 Jan; 101(1):303-312. PubMed ID: 12231686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The supply of reducing power for nitrite reduction in plastids of seedling pea roots (Pisum sativum L.).
    Emes MJ; Fowler MW
    Planta; 1983 Jun; 158(2):97-102. PubMed ID: 24264536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrite reduction in barley-root plastids: Dependence on NADPH coupled with glucose-6-phosphate and 6-phosphogluconate dehydrogenases, and possible involvement of an electron carrier and a diaphorase.
    Oji Y; Watanabe M; Wakiuchi N; Okamoto S
    Planta; 1985 Jul; 165(1):85-90. PubMed ID: 24240961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ATP in nitrite reduction in roots of wheat and pea.
    Dry I; Wallace W; Nicholas DJ
    Planta; 1981 Jul; 152(3):234-8. PubMed ID: 24302420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrelationship between nitrate assimilation and carbohydrate metabolism in plant roots.
    Sarkissian GS; Fowler MW
    Planta; 1974 Dec; 119(4):335-49. PubMed ID: 24442567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADP-glucose drives starch synthesis in isolated maize endosperm amyloplasts: characterization of starch synthesis and transport properties across the amyloplast envelope.
    Möhlmann T; Tjaden J; Henrichs G; Quick WP; Häusler R; Neuhaus HE
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):503-9. PubMed ID: 9182710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the glucose-6-phosphate transporter in oilseed rape (Brassica napus L.) plastids by acyl-CoA thioesters reduces fatty acid synthesis.
    Fox SR; Hill LM; Rawsthorne S; Hills MJ
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):525-32. PubMed ID: 11085947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate breakdown by chloroplasts of Pisum sativum.
    Stitt M; Rees TA
    Biochim Biophys Acta; 1980 Jan; 627(2):131-43. PubMed ID: 7350922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for channeling of intermediates in the oxidative pentose phosphate pathway by soybean and pea nodule extracts, yeast extracts, and purified yeast enzymes.
    Debnam PM; Shearer G; Blackwood L; Kohl DH
    Eur J Biochem; 1997 Jun; 246(2):283-90. PubMed ID: 9208916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of carbohydrate transport across the envelope of isolated cauliflower-bud amyloplasts.
    Möhlmann T; Batz O; Maass U; Neuhaus HE
    Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):521-6. PubMed ID: 7733892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose.
    Dieuaide-Noubhani M; Raffard G; Canioni P; Pradet A; Raymond P
    J Biol Chem; 1995 Jun; 270(22):13147-59. PubMed ID: 7768910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that glucose 6-phosphate is imported as the substrate for starch synthesis by the plastids of developing pea embryos.
    Hill LM; Smith AM
    Planta; 1991 Aug; 185(1):91-6. PubMed ID: 24186284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower (Helianthus annuus L.) embryos.
    Pleite R; Pike MJ; Garcés R; Martínez-Force E; Rawsthorne S
    J Exp Bot; 2005 May; 56(415):1297-303. PubMed ID: 15767323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exogenous lead on growth and carbon metabolism of pea (Pisum sativum L) seedlings.
    Devi R; Munjral N; Gupta AK; Kaur N
    Physiol Mol Biol Plants; 2013 Jan; 19(1):81-9. PubMed ID: 24381440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.).
    Hutchings D; Rawsthorne S; Emes MJ
    J Exp Bot; 2005 Feb; 56(412):577-85. PubMed ID: 15611146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of alpha-toxin from Staphylococcus aureus to test for channelling of intermediates of glycolysis between glucokinase and aldolase in hepatocytes.
    Cascante M; Centelles JJ; Agius L
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):899-905. PubMed ID: 11104701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive pentose phosphate cycle and oxidative carbohydrate metabolic activities in pea chloroplast stroma extracts.
    Furbank RT; Lilley RM
    Plant Physiol; 1981 May; 67(5):1036-41. PubMed ID: 16661778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoenzymes of Glutamine Synthetase in Roots of Pea (Pisum sativum L. cv Little Marvel) and Alfalfa (Medicago media Pers. cv Saranac).
    Vézina LP; Hope HJ; Joy KW
    Plant Physiol; 1987 Jan; 83(1):58-62. PubMed ID: 16665216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.