BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 24212471)

  • 1. Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis.
    Zheng H; Liu Y; Sun M; Han Y; Wang J; Sun J; Lu F
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):153-62. PubMed ID: 24212471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic characterization and thermostability improvement of an acidophilic endoxylanase PphXyn11 from Paenibacillus physcomitrellae XB.
    Wang L; Wang YY; Chen ZL; Li YH
    Protein Expr Purif; 2024 Jul; 219():106482. PubMed ID: 38583789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the inhibitory resistance of xylanase FgXyn11C from Fusarium graminearum to SyXIP-I by site-directed mutagenesis.
    Huang J; Zhang D; Omedi JO; Lei Y; Su X; Wu M; Huang W
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132434. PubMed ID: 38788879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-Aided Reconstruction and Application of
    Zhou H; Cai Y; Long M; Zheng N; Zhang Z; You C; Hussain A; Xia X
    J Agric Food Chem; 2024 Jan; 72(2):1213-1227. PubMed ID: 38183306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27.
    Manikandan K; Bhardwaj A; Ghosh A; Reddy VS; Ramakumar S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Aug; 61(Pt 8):747-9. PubMed ID: 16511146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustered surface amino acid residues modulate the acid stability of GH10 xylanase in fungi.
    Xia Y; Wang W; Wei Y; Guo C; Song S; Cai S; Miao Y
    Appl Microbiol Biotechnol; 2024 Feb; 108(1):216. PubMed ID: 38363378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility of active center affects thermostability and activity of Penicillium canescens xylanase E.
    Dotsenko A; Sinelnikov I; Rozhkova A; Zorov I; Sinitsyn A
    Biochimie; 2024 Jan; 216():83-89. PubMed ID: 37820990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new halotolerant xylanase from
    Pasin TM; Lucas RC; de Oliveira TB; McLeish MJ; Polizeli MLTM
    3 Biotech; 2024 Jul; 14(7):178. PubMed ID: 38855145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights Into the Role of Exposed Surface Charged Residues in the Alkali-Tolerance of GH11 Xylanase.
    Wu X; Zhang Q; Zhang L; Liu S; Chen G; Zhang H; Wang L
    Front Microbiol; 2020; 11():872. PubMed ID: 32457729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can constraint network analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-β-glucanase.
    Contreras F; Nutschel C; Beust L; Davari MD; Gohlke H; Schwaneberg U
    Comput Struct Biotechnol J; 2021; 19():743-751. PubMed ID: 33552446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Catalytic Properties of Xylanase from Alteromones Macleadii H35 Through Sequence Analysis.
    Cui C; Xu J; Wu J; Wang N; Zhang Z; Zhou C
    Appl Biochem Biotechnol; 2024 Mar; ():. PubMed ID: 38538873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and structural analysis of a thermophilic GH11 xylanase from compost metatranscriptome.
    Yi Y; Xu S; Kovalevsky A; Zhang X; Liu D; Wan Q
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7757-7767. PubMed ID: 34553251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts.
    Ribeiro LF; Amarelle V; Alves LF; Viana de Siqueira GM; Lovate GL; Borelli TC; Guazzaroni ME
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31398877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational method for prediction of xylanase enzymes activity in strains of Bacillus subtilis based on pseudo amino acid composition features.
    Ariaeenejad S; Mousivand M; Moradi Dezfouli P; Hashemi M; Kavousi K; Hosseini Salekdeh G
    PLoS One; 2018; 13(10):e0205796. PubMed ID: 30346964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of a β-mannanase from
    Li YX; Yi P; Yan QJ; Qin Z; Liu XQ; Jiang ZQ
    Biotechnol Biofuels; 2017; 10():143. PubMed ID: 28588644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the temperature characteristics and catalytic efficiency of a mesophilic xylanase from Aspergillus oryzae, AoXyn11A, by iterative mutagenesis based on in silico design.
    Li XQ; Wu Q; Hu D; Wang R; Liu Y; Wu MC; Li JF
    AMB Express; 2017 Dec; 7(1):97. PubMed ID: 28508385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis.
    Bai W; Cao Y; Liu J; Wang Q; Jia Z
    BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes.
    Santiago M; Ramírez-Sarmiento CA; Zamora RA; Parra LP
    Front Microbiol; 2016; 7():1408. PubMed ID: 27667987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation.
    Zheng H; Yu Z; Fu X; Li S; Xu J; Song H; Ma Y
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):977-87. PubMed ID: 27130461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on properties of the xylan‑binding domain and linker sequence of xylanase XynG1‑1 from Paenibacillus campinasensis G1‑1.
    Liu Y; Huang L; Li W; Guo W; Zheng H; Wang J; Lu F
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1591-9. PubMed ID: 26467249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.