These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24213072)

  • 1. Prediction of progeny variation in oat from parental genetic relationships.
    Souza E; Sorrells ME
    Theor Appl Genet; 1991 Aug; 82(2):233-41. PubMed ID: 24213072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of testcross means and variances among F3 progenies of F1 crosses from testcross means and genetic distances of their parents in maize.
    Melchinger AE; Gumber RK; Leipert RB; Vuylsteke M; Kuiper M
    Theor Appl Genet; 1998 Mar; 96(3-4):503-12. PubMed ID: 24710890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining ability in the F1 and F2 generations of diallel cross in hexaploid wheat (Triticum aestivum L. em. Thell).
    Joshi SK; Sharma SN; Singhania DL; Sain RS
    Hereditas; 2004; 141(2):115-21. PubMed ID: 15660971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices.
    Wolfe MD; Chan AW; Kulakow P; Rabbi I; Jannink JL
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining ability analysis over F1-F 5 generations in diallel crosses of bread wheat.
    Bhullar GS; Gill KS; Khehra AS
    Theor Appl Genet; 1979 Mar; 55(2):77-80. PubMed ID: 24306488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining ability and heterosis for some agronomic traits in crosses of maize.
    Abdel-Moneam MA; Attia AN; El-Emery MI; Fayed EA
    Pak J Biol Sci; 2009 Mar; 12(5):433-8. PubMed ID: 19579983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL.
    Schrag TA; Melchinger AE; Sørensen AP; Frisch M
    Theor Appl Genet; 2006 Oct; 113(6):1037-47. PubMed ID: 16896712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation means analysis for productivity in two diverse peanut crosses.
    Halward TM; Wynne JC
    Theor Appl Genet; 1991 Oct; 82(6):784-92. PubMed ID: 24213456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo.
    Yoon DB; Kang KH; Kim HJ; Ju HG; Kwon SJ; Suh JP; Jeong OY; Ahn SN
    Theor Appl Genet; 2006 Apr; 112(6):1052-62. PubMed ID: 16432737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Usefulness Criterion and Post-selection Parental Contributions in Multi-parental Crosses: Application to Polygenic Trait Introgression.
    Allier A; Moreau L; Charcosset A; Teyssèdre S; Lehermeier C
    G3 (Bethesda); 2019 May; 9(5):1469-1479. PubMed ID: 30819823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population.
    Hung HY; Browne C; Guill K; Coles N; Eller M; Garcia A; Lepak N; Melia-Hancock S; Oropeza-Rosas M; Salvo S; Upadyayula N; Buckler ES; Flint-Garcia S; McMullen MD; Rocheford TR; Holland JB
    Heredity (Edinb); 2012 May; 108(5):490-9. PubMed ID: 22027895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of parental divergence on F2 heterosis in winter wheat crosses.
    Cox TS; Murphy JP
    Theor Appl Genet; 1990 Feb; 79(2):241-50. PubMed ID: 24226225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs.
    Lado B; Battenfield S; Guzmán C; Quincke M; Singh RP; Dreisigacker S; Peña RJ; Fritz A; Silva P; Poland J; Gutiérrez L
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun).
    Teklewold A; Becker HC
    Theor Appl Genet; 2006 Feb; 112(4):752-9. PubMed ID: 16365759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Means and Variances of Crosses With Genome-Wide Marker Effects in Barley.
    Osthushenrich T; Frisch M; Zenke-Philippi C; Jaiser H; Spiller M; Cselényi L; Krumnacker K; Boxberger S; Kopahnke D; Habekuß A; Ordon F; Herzog E
    Front Plant Sci; 2018; 9():1899. PubMed ID: 30627135
    [No Abstract]   [Full Text] [Related]  

  • 16. Genetic estimation of grain yield and its attributes in three wheat (
    Attri H; Dey T; Singh B; Kour A
    J Genet; 2021; 100():. PubMed ID: 34282738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterosis in some crosses of bread wheat under irrigation and drought conditions.
    Abdel-Moneam MA
    Pak J Biol Sci; 2009 Mar; 12(6):486-91. PubMed ID: 19579996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends in population parameters and best linear unbiased prediction of progeny performance in a European F(2) maize population under modified recurrent full-sib selection.
    Flachenecker C; Frisch M; Falke KC; Melchinger AE
    Theor Appl Genet; 2006 Feb; 112(3):483-91. PubMed ID: 16344984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids.
    Pereira AS; de Almeida AF; Branco MCDS; Costa MGC; Ahnert D
    PLoS One; 2017; 12(6):e0178790. PubMed ID: 28628670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.
    Jiang G; Zeng J; He Y
    Gene; 2014 Feb; 536(2):287-95. PubMed ID: 24361205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.