These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24213187)

  • 1. Electrochemical ammonia production on molybdenum nitride nanoclusters.
    Howalt JG; Vegge T
    Phys Chem Chem Phys; 2013 Dec; 15(48):20957-65. PubMed ID: 24213187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production.
    Howalt JG; Vegge T
    Beilstein J Nanotechnol; 2014; 5():111-20. PubMed ID: 24605277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT based study of transition metal nano-clusters for electrochemical NH3 production.
    Howalt JG; Bligaard T; Rossmeisl J; Vegge T
    Phys Chem Chem Phys; 2013 May; 15(20):7785-95. PubMed ID: 23598667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction.
    Skúlason E; Bligaard T; Gudmundsdóttir S; Studt F; Rossmeisl J; Abild-Pedersen F; Vegge T; Jónsson H; Nørskov JK
    Phys Chem Chem Phys; 2012 Jan; 14(3):1235-45. PubMed ID: 22146855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-reduction of nitrogen on molybdenum nitride: structure, energetics, and vibrational spectra from DFT.
    Matanović I; Garzon FH; Henson NJ
    Phys Chem Chem Phys; 2014 Feb; 16(7):3014-26. PubMed ID: 24394549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition.
    Zheng W; Cotter TP; Kaghazchi P; Jacob T; Frank B; Schlichte K; Zhang W; Su DS; Schüth F; Schlögl R
    J Am Chem Soc; 2013 Mar; 135(9):3458-64. PubMed ID: 23350903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design.
    Abghoui Y; Garden AL; Hlynsson VF; Björgvinsdóttir S; Ólafsdóttir H; Skúlason E
    Phys Chem Chem Phys; 2015 Feb; 17(7):4909-18. PubMed ID: 25446373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study.
    Matanovic I; Garzon FH
    Phys Chem Chem Phys; 2018 May; 20(21):14679-14687. PubMed ID: 29770397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of H-termination on the nitrogen reduction reaction of molybdenum carbide as an electrochemical catalyst.
    Li Q; Qiu S; He L; Zhang X; Sun C
    Phys Chem Chem Phys; 2018 Sep; 20(36):23338-23343. PubMed ID: 30175829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation.
    Ou P; Zhou X; Meng F; Chen C; Chen Y; Song J
    Nanoscale; 2019 Jul; 11(28):13600-13611. PubMed ID: 31290905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating ammonia synthesis in a membraneless flow electrolyzer through coupling ambient dinitrogen oxidation and water splitting.
    Lv JJ; Li Z; Fu J; Zhu W
    iScience; 2023 Apr; 26(4):106407. PubMed ID: 37020967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical studies of ammonia generation: Reactions of H2 with neutral cobalt nitride clusters.
    Yin S; Xie Y; Bernstein ER
    J Chem Phys; 2012 Sep; 137(12):124304. PubMed ID: 23020328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations.
    Montoya JH; Tsai C; Vojvodic A; Nørskov JK
    ChemSusChem; 2015 Jul; 8(13):2180-6. PubMed ID: 26097211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen fixation under mild ambient conditions: part I--the initial dissociation/association step at molybdenum triamidoamine complexes.
    Le Guennic B; Kirchner B; Reiher M
    Chemistry; 2005 Dec; 11(24):7448-60. PubMed ID: 16267863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.
    Pool JA; Lobkovsky E; Chirik PJ
    Nature; 2004 Feb; 427(6974):527-30. PubMed ID: 14765191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential.
    Wang J; Yu L; Hu L; Chen G; Xin H; Feng X
    Nat Commun; 2018 May; 9(1):1795. PubMed ID: 29765053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Yandulov DV; Schrock RR
    Science; 2003 Jul; 301(5629):76-8. PubMed ID: 12843387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT Investigation of Ammonia Formation via a Langmuir-Hinshelwood Mechanism on Mo-Terminated δ-MoN(0001).
    Sajid M; Kaden WE; Kara A
    ACS Omega; 2022 Feb; 7(5):4277-4285. PubMed ID: 35155920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia Synthesis at Ambient Conditions via Electrochemical Atomic Hydrogen Permeation.
    Ripepi D; Zaffaroni R; Schreuders H; Boshuizen B; Mulder FM
    ACS Energy Lett; 2021 Nov; 6(11):3817-3823. PubMed ID: 34805525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride Catalysts.
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Hosono H
    J Am Chem Soc; 2020 Aug; 142(33):14374-14383. PubMed ID: 32787255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.