These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 2421388)
1. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Passow H Rev Physiol Biochem Pharmacol; 1986; 103():61-203. PubMed ID: 2421388 [No Abstract] [Full Text] [Related]
2. The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Solomon AK; Chasan B; Dix JA; Lukacovic MF; Toon MR; Verkman AS Ann N Y Acad Sci; 1983; 414():97-124. PubMed ID: 6322657 [No Abstract] [Full Text] [Related]
3. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein. Legrum B; Passow H Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878 [TBL] [Abstract][Full Text] [Related]
4. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport. Salhany JM; Sloan RL; Cordes KS Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372 [TBL] [Abstract][Full Text] [Related]
5. Protein structure in relation to anion transport in red cells. Rothstein A; Ramjeesingh M; Grinstein S; Knauf PA Ann N Y Acad Sci; 1980; 341():433-43. PubMed ID: 6994547 [No Abstract] [Full Text] [Related]
6. Major proteolytic fragments of the murine band 3 protein as obtained after in situ proteolysis. Raida M; Wendel J; Kojro E; Fahrenholz F; Fasold H; Legrum B; Passow H Biochim Biophys Acta; 1989 Apr; 980(3):291-8. PubMed ID: 2713407 [TBL] [Abstract][Full Text] [Related]
7. Slow transitions between two conformational states of band 3 (AE1) modulate divalent anion transport and DBDS binding to a second site on band 3 which is activated by lowering the pH (pK approximately 5.0). Salhany JM Blood Cells Mol Dis; 2004; 32(3):372-8. PubMed ID: 15121094 [TBL] [Abstract][Full Text] [Related]
8. Formation and properties of tetramers of band 3 protein from human erythrocyte membranes in planar lipid bilayers. Benz R; Tosteson MT; Schubert D Biochim Biophys Acta; 1984 Sep; 775(3):347-55. PubMed ID: 6466677 [TBL] [Abstract][Full Text] [Related]
9. The physiology of anion transport in red cells. Brahm J Prog Hematol; 1986; 14():1-21. PubMed ID: 2418461 [No Abstract] [Full Text] [Related]
10. The red cell band 3 protein: its role in anion transport. Rothstein A; Ramjeesingh M Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):497-507. PubMed ID: 6130542 [TBL] [Abstract][Full Text] [Related]
11. Band-3 protein-mediated anion conductance of the red cell membrane. Slippage vs ionic diffusion. Kaplan JH; Pring M; Passow H FEBS Lett; 1983 May; 156(1):175-9. PubMed ID: 6852250 [TBL] [Abstract][Full Text] [Related]
12. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Low PS Biochim Biophys Acta; 1986 Sep; 864(2):145-67. PubMed ID: 2943319 [No Abstract] [Full Text] [Related]
13. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites. Macara IG; Cantley LC Biochemistry; 1981 Sep; 20(20):5695-701. PubMed ID: 7295699 [TBL] [Abstract][Full Text] [Related]
14. Three different actions of phenylglyoxal on band 3 protein-mediated anion transport across the red blood cell membrane. Gärtner EM; Liebold K; Legrum B; Fasold H; Passow H Biochim Biophys Acta; 1997 Jan; 1323(2):208-22. PubMed ID: 9042344 [TBL] [Abstract][Full Text] [Related]
15. Target molecular weights for red cell band 3 stilbene and mercurial binding sites. Verkman AS; Skorecki KL; Jung CY; Ausiello DA Am J Physiol; 1986 Oct; 251(4 Pt 1):C541-8. PubMed ID: 3020989 [TBL] [Abstract][Full Text] [Related]
16. Functions of extracellular lysine residues in the human erythrocyte anion transport protein. Jennings ML; Monaghan R; Douglas SM; Nicknish JS J Gen Physiol; 1985 Nov; 86(5):653-69. PubMed ID: 3934327 [TBL] [Abstract][Full Text] [Related]
17. The mechanisms of inhibition of anion exchange in human erythrocytes by 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide. Werner PK; Reithmeier RA Biochim Biophys Acta; 1988 Jul; 942(1):19-32. PubMed ID: 2454665 [TBL] [Abstract][Full Text] [Related]
18. Allosteric effects in stilbenedisulfonate binding to band 3 protein (AE1). Salhany JM Cell Mol Biol (Noisy-le-grand); 1996 Nov; 42(7):1065-96. PubMed ID: 8960781 [TBL] [Abstract][Full Text] [Related]
19. Band 3 (AE1, SLC4A1)-mediated transport of stilbenedisulfonates. II: Evidence for transmembrane allosteric interactions between the "primary" stilbenedisulfonate binding site and the stilbenedisulfonate efflux site. Salhany JM; Cordes KS; Sloan RL Blood Cells Mol Dis; 2006; 37(3):149-54. PubMed ID: 16996753 [TBL] [Abstract][Full Text] [Related]
20. A kinetic study of the role of band 3 anion transport protein in the transport of salicylic acid and other hydroxybenzoic acids across the human erythrocyte membrane. Minami T; Cutler DJ J Pharm Sci; 1992 May; 81(5):424-7. PubMed ID: 1403672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]