BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24214021)

  • 1. Exploring intercellular signaling by proteomic approaches.
    Tian R
    Proteomics; 2014 Mar; 14(4-5):498-512. PubMed ID: 24214021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting intercellular signaling with mass spectrometry-based proteomics.
    Swietlik JJ; Sinha A; Meissner F
    Curr Opin Cell Biol; 2020 Apr; 63():20-30. PubMed ID: 31927463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The next level of complexity: crosstalk of posttranslational modifications.
    Venne AS; Kollipara L; Zahedi RP
    Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor.
    Tian R; Wang H; Gish GD; Petsalaki E; Pasculescu A; Shi Y; Mollenauer M; Bagshaw RD; Yosef N; Hunter T; Gingras AC; Weiss A; Pawson T
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):E1594-603. PubMed ID: 25829543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry for proteomics-based investigation.
    Woods AG; Sokolowska I; Ngounou Wetie AG; Wormwood K; Aslebagh R; Patel S; Darie CC
    Adv Exp Med Biol; 2014; 806():1-32. PubMed ID: 24952176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of LC/MS to proteomics studies: current status and future prospects.
    Chen G; Pramanik BN
    Drug Discov Today; 2009 May; 14(9-10):465-71. PubMed ID: 19429505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics.
    Wu L; Han DK
    Expert Rev Proteomics; 2006 Dec; 3(6):611-9. PubMed ID: 17181475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantify this! Report on a round table discussion on quantitative mass spectrometry in proteomics.
    Quadroni M; Ducret A; Stöcklin R
    Proteomics; 2004 Aug; 4(8):2211-5. PubMed ID: 15274113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systems-wide proteomic characterization of combinatorial post-translational modification patterns.
    Young NL; Plazas-Mayorca MD; Garcia BA
    Expert Rev Proteomics; 2010 Feb; 7(1):79-92. PubMed ID: 20121478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a better understanding of nuclear processes based on proteomics.
    Tweedie-Cullen RY; Mansuy IM
    Amino Acids; 2010 Nov; 39(5):1117-30. PubMed ID: 20730591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic strategies to characterize signaling pathways.
    Harsha HC; Pinto SM; Pandey A
    Methods Mol Biol; 2013; 1007():359-77. PubMed ID: 23666735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor tyrosine kinase signaling: a view from quantitative proteomics.
    Dengjel J; Kratchmarova I; Blagoev B
    Mol Biosyst; 2009 Oct; 5(10):1112-21. PubMed ID: 19756300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding communication patterns of the innate immune system by quantitative proteomics.
    Sukumaran A; Coish JM; Yeung J; Muselius B; Gadjeva M; MacNeil AJ; Geddes-McAlister J
    J Leukoc Biol; 2019 Dec; 106(6):1221-1232. PubMed ID: 31556465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteomics in analyzing signaling pathways.
    Mukherji M
    Expert Rev Proteomics; 2005 Jan; 2(1):117-28. PubMed ID: 15966857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concise review: trends in stem cell proteomics.
    Baharvand H; Fathi A; van Hoof D; Salekdeh GH
    Stem Cells; 2007 Aug; 25(8):1888-903. PubMed ID: 17495109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry-based proteomics and network biology.
    Bensimon A; Heck AJ; Aebersold R
    Annu Rev Biochem; 2012; 81():379-405. PubMed ID: 22439968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics of cell-cell interactions in health and disease.
    Lindoso RS; Sandim V; Collino F; Carvalho AB; Dias J; da Costa MR; Zingali RB; Vieyra A
    Proteomics; 2016 Jan; 16(2):328-44. PubMed ID: 26552723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins.
    Temporini C; Calleri E; Massolini G; Caccialanza G
    Mass Spectrom Rev; 2008; 27(3):207-36. PubMed ID: 18335498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Functional proteomics in oncology: to understand more than to describe].
    Com E; Hondermarck H
    Med Sci (Paris); 2007 Mar; 23 Spec No 1():27-30. PubMed ID: 17669350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.