These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 24214024)

  • 1. Origin and evolution of the eukaryotic SSU processome revealed by a comprehensive genomic analysis and implications for the origin of the nucleolus.
    Feng JM; Tian HF; Wen JF
    Genome Biol Evol; 2013; 5(12):2255-67. PubMed ID: 24214024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utp14 interaction with the small subunit processome.
    Black JJ; Wang Z; Goering LM; Johnson AW
    RNA; 2018 Sep; 24(9):1214-1228. PubMed ID: 29925570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.
    Sardana R; White JP; Johnson AW
    RNA; 2013 Jun; 19(6):828-40. PubMed ID: 23604635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The small-subunit processome is a ribosome assembly intermediate.
    Bernstein KA; Gallagher JE; Mitchell BM; Granneman S; Baserga SJ
    Eukaryot Cell; 2004 Dec; 3(6):1619-26. PubMed ID: 15590835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Noc-domain containing C-terminus of Noc4p mediates both formation of the Noc4p-Nop14p submodule and its incorporation into the SSU processome.
    Kühn H; Hierlmeier T; Merl J; Jakob S; Aguissa-Touré AH; Milkereit P; Tschochner H
    PLoS One; 2009 Dec; 4(12):e8370. PubMed ID: 20019888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human diseases of the SSU processome.
    Sondalle SB; Baserga SJ
    Biochim Biophys Acta; 2014 Jun; 1842(6):758-64. PubMed ID: 24240090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bud23 promotes the final disassembly of the small subunit Processome in Saccharomyces cerevisiae.
    Black JJ; Sardana R; Elmir EW; Johnson AW
    PLoS Genet; 2020 Dec; 16(12):e1009215. PubMed ID: 33306676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct interaction between Utp8p and Utp9p contributes to rRNA processing in budding yeast.
    Huang YC; Tseng SF; Tsai HJ; Lenzmeier BA; Teng SC
    Biochem Biophys Res Commun; 2010 Mar; 393(2):297-302. PubMed ID: 20138832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture of the yeast small subunit processome.
    Chaker-Margot M; Barandun J; Hunziker M; Klinge S
    Science; 2017 Jan; 355(6321):. PubMed ID: 27980088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The DEAD-box RNA helicase-like Utp25 is an SSU processome component.
    Charette JM; Baserga SJ
    RNA; 2010 Nov; 16(11):2156-69. PubMed ID: 20884785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteins and RNA sequences required for the transition of the t-Utp complex into the SSU processome.
    Gallagher JEG
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30445532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of two neighbouring ribosomal protein clusters on biogenesis factor binding and assembly of yeast late small ribosomal subunit precursors.
    Linnemann J; Pöll G; Jakob S; Ferreira-Cerca S; Griesenbeck J; Tschochner H; Milkereit P
    PLoS One; 2019; 14(1):e0203415. PubMed ID: 30653518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nuclear poly(A) polymerase and Exosome cofactor Trf5 is recruited cotranscriptionally to nucleolar surveillance.
    Wery M; Ruidant S; Schillewaert S; Leporé N; Lafontaine DL
    RNA; 2009 Mar; 15(3):406-19. PubMed ID: 19141608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary history of phosphatidylinositol- 3-kinases: ancestral origin in eukaryotes and complex duplication patterns.
    Philippon H; Brochier-Armanet C; Perrière G
    BMC Evol Biol; 2015 Oct; 15():226. PubMed ID: 26482564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes.
    Archibald JM; Logsdon JM; Doolittle WF
    Mol Biol Evol; 2000 Oct; 17(10):1456-66. PubMed ID: 11018153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The small subunit processome in ribosome biogenesis—progress and prospects.
    Phipps KR; Charette J; Baserga SJ
    Wiley Interdiscip Rev RNA; 2011; 2(1):1-21. PubMed ID: 21318072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility.
    Hoeppner MP; Poole AM
    BMC Evol Biol; 2012 Sep; 12():183. PubMed ID: 22978381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembling a protein-protein interaction map of the SSU processome from existing datasets.
    Lim YH; Charette JM; Baserga SJ
    PLoS One; 2011 Mar; 6(3):e17701. PubMed ID: 21423703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly and structure of the SSU processome-a nucleolar precursor of the small ribosomal subunit.
    Barandun J; Hunziker M; Klinge S
    Curr Opin Struct Biol; 2018 Apr; 49():85-93. PubMed ID: 29414516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nucleolar protein Nop19p interacts preferentially with Utp25p and Dhr2p and is essential for the production of the 40S ribosomal subunit in Saccharomyces cerevisiae.
    Choque E; Marcellin M; Burlet-Schiltz O; Gadal O; Dez C
    RNA Biol; 2011; 8(6):1158-72. PubMed ID: 21941128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.