These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 24214024)
41. Origin and evolution of spliceosomal introns. Rogozin IB; Carmel L; Csuros M; Koonin EV Biol Direct; 2012 Apr; 7():11. PubMed ID: 22507701 [TBL] [Abstract][Full Text] [Related]
42. Primary and secondary structure of the nuclear small subunit ribosomal RNA of the cryptomonad Pyrenomonas salina as inferred from the gene sequence: evolutionary implications. Eschbach S; Wolters J; Sitte P J Mol Evol; 1991 Mar; 32(3):247-52. PubMed ID: 1904501 [TBL] [Abstract][Full Text] [Related]
43. Components of an interdependent unit within the SSU processome regulate and mediate its activity. Wehner KA; Gallagher JE; Baserga SJ Mol Cell Biol; 2002 Oct; 22(20):7258-67. PubMed ID: 12242301 [TBL] [Abstract][Full Text] [Related]
44. Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Bengtsson J; Eriksson KM; Hartmann M; Wang Z; Shenoy BD; Grelet GA; Abarenkov K; Petri A; Rosenblad MA; Nilsson RH Antonie Van Leeuwenhoek; 2011 Oct; 100(3):471-5. PubMed ID: 21674231 [TBL] [Abstract][Full Text] [Related]
45. The complete structure of the small-subunit processome. Barandun J; Chaker-Margot M; Hunziker M; Molloy KR; Chait BT; Klinge S Nat Struct Mol Biol; 2017 Nov; 24(11):944-953. PubMed ID: 28945246 [TBL] [Abstract][Full Text] [Related]
46. An emerging mechanism for the maturation of the Small Subunit Processome. Vanden Broeck A; Klinge S Curr Opin Struct Biol; 2022 Apr; 73():102331. PubMed ID: 35176592 [TBL] [Abstract][Full Text] [Related]
47. Dissecting ribosome assembly and transport in budding yeast. Altvater M; Schütz S; Chang Y; Panse VG Methods Cell Biol; 2014; 122():437-61. PubMed ID: 24857742 [TBL] [Abstract][Full Text] [Related]
48. Evidence supporting a viral origin of the eukaryotic nucleus. Bell PJL Virus Res; 2020 Nov; 289():198168. PubMed ID: 32961211 [TBL] [Abstract][Full Text] [Related]
49. Sgd1 is an MIF4G domain-containing cofactor of the RNA helicase Fal1 and associates with the 5' domain of the 18S rRNA sequence. Davila Gallesio J; Hackert P; Bohnsack KE; Bohnsack MT RNA Biol; 2020 Apr; 17(4):539-553. PubMed ID: 31994962 [TBL] [Abstract][Full Text] [Related]
50. Concepts of the last eukaryotic common ancestor. O'Malley MA; Leger MM; Wideman JG; Ruiz-Trillo I Nat Ecol Evol; 2019 Mar; 3(3):338-344. PubMed ID: 30778187 [TBL] [Abstract][Full Text] [Related]
51. Insights into the evolutionary conserved regulation of Rio ATPase activity. Knüppel R; Christensen RH; Gray FC; Esser D; Strauß D; Medenbach J; Siebers B; MacNeill SA; LaRonde N; Ferreira-Cerca S Nucleic Acids Res; 2018 Feb; 46(3):1441-1456. PubMed ID: 29237037 [TBL] [Abstract][Full Text] [Related]
52. Mutations in the nucleolar proteins Tma23 and Nop6 suppress the malfunction of the Nep1 protein. Buchhaupt M; Kötter P; Entian KD FEMS Yeast Res; 2007 Sep; 7(6):771-81. PubMed ID: 17425675 [TBL] [Abstract][Full Text] [Related]
53. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257 [TBL] [Abstract][Full Text] [Related]
54. The small subunit processome is required for cell cycle progression at G1. Bernstein KA; Baserga SJ Mol Biol Cell; 2004 Nov; 15(11):5038-46. PubMed ID: 15356263 [TBL] [Abstract][Full Text] [Related]
55. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. Iyer LM; Koonin EV; Aravind L BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882 [TBL] [Abstract][Full Text] [Related]
56. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Douglas SE; Murphy CA; Spencer DF; Gray MW Nature; 1991 Mar; 350(6314):148-51. PubMed ID: 2005963 [TBL] [Abstract][Full Text] [Related]
57. Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae. Soudet J; Gélugne JP; Belhabich-Baumas K; Caizergues-Ferrer M; Mougin A EMBO J; 2010 Jan; 29(1):80-92. PubMed ID: 19893492 [TBL] [Abstract][Full Text] [Related]
58. The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes. Tian HF; Feng JM; Wen JF BMC Evol Biol; 2012 Mar; 12():32. PubMed ID: 22409430 [TBL] [Abstract][Full Text] [Related]
59. A comparison of the crystal structures of eukaryotic and bacterial SSU ribosomal RNAs reveals common structural features in the hypervariable regions. Lee JC; Gutell RR PLoS One; 2012; 7(5):e38203. PubMed ID: 22693601 [TBL] [Abstract][Full Text] [Related]
60. Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Osheim YN; French SL; Keck KM; Champion EA; Spasov K; Dragon F; Baserga SJ; Beyer AL Mol Cell; 2004 Dec; 16(6):943-54. PubMed ID: 15610737 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]