These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24214407)

  • 1. Intuitive, but not simple: including explicit water molecules in protein-protein docking simulations improves model quality.
    Parikh HI; Kellogg GE
    Proteins; 2014 Jun; 82(6):916-32. PubMed ID: 24214407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.
    Su C; Nguyen TD; Zheng J; Kwoh CK
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S9. PubMed ID: 25521441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explicit treatment of water molecules in data-driven protein-protein docking: the solvated HADDOCKing approach.
    Kastritis PL; van Dijk AD; Bonvin AM
    Methods Mol Biol; 2012; 819():355-74. PubMed ID: 22183547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes.
    Fornabaio M; Spyrakis F; Mozzarelli A; Cozzini P; Abraham DJ; Kellogg GE
    J Med Chem; 2004 Aug; 47(18):4507-16. PubMed ID: 15317462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvated protein-protein docking using Kyte-Doolittle-based water preferences.
    Kastritis PL; Visscher KM; van Dijk AD; Bonvin AM
    Proteins; 2013 Mar; 81(3):510-8. PubMed ID: 23161727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins?
    Englebienne P; Moitessier N
    J Chem Inf Model; 2009 Jun; 49(6):1568-80. PubMed ID: 19445499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.
    Liu J; He X; Zhang JZ
    J Chem Inf Model; 2013 Jun; 53(6):1306-14. PubMed ID: 23651068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of the protein-DNA-water interaction.
    Spyrakis F; Cozzini P; Bertoli C; Marabotti A; Kellogg GE; Mozzarelli A
    BMC Struct Biol; 2007 Jan; 7():4. PubMed ID: 17214883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent structure improves docking prediction in lectin-carbohydrate complexes.
    Gauto DF; Petruk AA; Modenutti CP; Blanco JI; Di Lella S; Martí MA
    Glycobiology; 2013 Feb; 23(2):241-58. PubMed ID: 23089616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvated docking: introducing water into the modelling of biomolecular complexes.
    van Dijk AD; Bonvin AM
    Bioinformatics; 2006 Oct; 22(19):2340-7. PubMed ID: 16899489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docking and scoring protein interactions: CAPRI 2009.
    Lensink MF; Wodak SJ
    Proteins; 2010 Nov; 78(15):3073-84. PubMed ID: 20806235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving CAPRI predictions: optimized desolvation for rigid-body docking.
    Fernández-Recio J; Abagyan R; Totrov M
    Proteins; 2005 Aug; 60(2):308-13. PubMed ID: 15981266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular dynamics approach to study the importance of solvent in protein interactions.
    Samsonov S; Teyra J; Pisabarro MT
    Proteins; 2008 Nov; 73(2):515-25. PubMed ID: 18452208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.
    Therrien E; Weill N; Tomberg A; Corbeil CR; Lee D; Moitessier N
    J Chem Inf Model; 2014 Nov; 54(11):3198-210. PubMed ID: 25280064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.
    Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A
    J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The consequences of scoring docked ligand conformations using free energy correlations.
    Spyrakis F; Amadasi A; Fornabaio M; Abraham DJ; Mozzarelli A; Kellogg GE; Cozzini P
    Eur J Med Chem; 2007 Jul; 42(7):921-33. PubMed ID: 17346861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the effect of key water molecules on docking performance in CSARdock exercise.
    Kumar A; Zhang KY
    J Chem Inf Model; 2013 Aug; 53(8):1880-92. PubMed ID: 23617355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvated protein-DNA docking using HADDOCK.
    van Dijk M; Visscher KM; Kastritis PL; Bonvin AM
    J Biomol NMR; 2013 May; 56(1):51-63. PubMed ID: 23625455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.