BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24214653)

  • 1. Detection of single photons by toad and mouse rods.
    Reingruber J; Pahlberg J; Woodruff ML; Sampath AP; Fain GL; Holcman D
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19378-83. PubMed ID: 24214653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling.
    Astakhova L; Firsov M; Govardovskii V
    Mol Vis; 2015; 21():244-63. PubMed ID: 25866462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of the Rod Photoreceptor Response Depends Critically on the Concentration of the Phosphodiesterase Effector Enzyme.
    Morshedian A; Sendek G; Ng SY; Boyd K; Radu RA; Liu M; Artemyev NO; Sampath AP; Fain GL
    J Neurosci; 2022 Mar; 42(11):2180-2189. PubMed ID: 35091503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light responses and light adaptation in rat retinal rods at different temperatures.
    Nymark S; Heikkinen H; Haldin C; Donner K; Koskelainen A
    J Physiol; 2005 Sep; 567(Pt 3):923-38. PubMed ID: 16037091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the rate constant of cyclic GMP hydrolysis by activated phosphodiesterase in photoreceptors.
    Reingruber J; Holcman D
    J Chem Phys; 2008 Oct; 129(14):145102. PubMed ID: 19045167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins of the phototransduction delay as inferred from stochastic and deterministic simulation of the amplification cascade.
    Rotov AY; Astakhova LA; Firsov ML; Govardovskii VI
    Mol Vis; 2017; 23():416-430. PubMed ID: 28744093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation.
    Chen CK; Woodruff ML; Fain GL
    J Gen Physiol; 2015 Mar; 145(3):213-24. PubMed ID: 25667411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.
    Holcman D; Korenbrot JI
    J Gen Physiol; 2005 Jun; 125(6):641-60. PubMed ID: 15928405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters.
    Shen L; Caruso G; Bisegna P; Andreucci D; Gurevich VV; Hamm HE; DiBenedetto E
    IET Syst Biol; 2010 Jan; 4(1):12-32. PubMed ID: 20001089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local, nonlinear effects of cGMP and Ca2+ reduce single photon response variability in retinal rods.
    Caruso G; Gurevich VV; Klaus C; Hamm H; Makino CL; DiBenedetto E
    PLoS One; 2019; 14(12):e0225948. PubMed ID: 31805112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elementary response triggered by transducin in retinal rods.
    Yue WWS; Silverman D; Ren X; Frederiksen R; Sakai K; Yamashita T; Shichida Y; Cornwall MC; Chen J; Yau KW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5144-5153. PubMed ID: 30796193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of key factors that reduce the variability of the single photon response.
    Caruso G; Bisegna P; Andreucci D; Lenoci L; Gurevich VV; Hamm HE; DiBenedetto E
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7804-7. PubMed ID: 21518901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements.
    Leskov IB; Klenchin VA; Handy JW; Whitlock GG; Govardovskii VI; Bownds MD; Lamb TD; Pugh EN; Arshavsky VY
    Neuron; 2000 Sep; 27(3):525-37. PubMed ID: 11055435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of low AIPL1 expression on phototransduction in rods.
    Makino CL; Wen XH; Michaud N; Peshenko IV; Pawlyk B; Brush RS; Soloviev M; Liu X; Woodruff ML; Calvert PD; Savchenko AB; Anderson RE; Fain GL; Li T; Sandberg MA; Dizhoor AM
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2185-94. PubMed ID: 16639031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal cGMP dynamics in living mouse rods.
    Gross OP; Pugh EN; Burns ME
    Biophys J; 2012 Apr; 102(8):1775-84. PubMed ID: 22768933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception.
    Reingruber J; Holcman D; Fain GL
    Bioessays; 2015 Nov; 37(11):1243-52. PubMed ID: 26354340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones.
    Koshitani Y; Tachibanaki S; Kawamura S
    J Biol Chem; 2014 Jan; 289(5):2651-7. PubMed ID: 24344136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rod outer segment structure influences the apparent kinetic parameters of cyclic GMP phosphodiesterase.
    Dumke CL; Arshavsky VY; Calvert PD; Bownds MD; Pugh EN
    J Gen Physiol; 1994 Jun; 103(6):1071-98. PubMed ID: 7931138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse.
    Nikonov S; Lamb TD; Pugh EN
    J Gen Physiol; 2000 Dec; 116(6):795-824. PubMed ID: 11099349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.