These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 24214875)
1. Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system. Luan G; Cai Z; Gong F; Dong H; Lin Z; Zhang Y; Li Y Protein Cell; 2013 Nov; 4(11):854-62. PubMed ID: 24214875 [TBL] [Abstract][Full Text] [Related]
2. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. Wang Q; Venkataramanan KP; Huang H; Papoutsakis ET; Wu CH BMC Syst Biol; 2013 Nov; 7():120. PubMed ID: 24196194 [TBL] [Abstract][Full Text] [Related]
3. Intracellular metabolic changes of Clostridium acetobutylicum and promotion to butanol tolerance during biobutanol fermentation. Wang YF; Tian J; Ji ZH; Song MY; Li H Int J Biochem Cell Biol; 2016 Sep; 78():297-306. PubMed ID: 27477314 [TBL] [Abstract][Full Text] [Related]
4. Synergism of Dam, MutH, and MutS in methylation-directed mismatch repair in Escherichia coli. Hu C; Zhao Y; Sun H; Yang Y Mutat Res; 2017 Jan; 795():31-33. PubMed ID: 28107644 [TBL] [Abstract][Full Text] [Related]
5. Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. Liu XB; Gu QY; Yu XB Bioresour Technol; 2013 Feb; 130():638-43. PubMed ID: 23334021 [TBL] [Abstract][Full Text] [Related]
6. A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum--solvent stress caused by a transient n-butanol pulse. Janssen H; Grimmler C; Ehrenreich A; Bahl H; Fischer RJ J Biotechnol; 2012 Oct; 161(3):354-65. PubMed ID: 22537853 [TBL] [Abstract][Full Text] [Related]
7. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. Xu M; Zhao J; Yu L; Yang ST J Biotechnol; 2017 Dec; 263():36-44. PubMed ID: 29050876 [TBL] [Abstract][Full Text] [Related]
8. Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19. Cho C; Choe D; Jang YS; Kim KJ; Kim WJ; Cho BK; Papoutsakis ET; Bennett GN; Seung DY; Lee SY Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27918147 [TBL] [Abstract][Full Text] [Related]
9. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. Cho C; Lee SY Biotechnol Bioeng; 2017 Feb; 114(2):374-383. PubMed ID: 27531464 [TBL] [Abstract][Full Text] [Related]
10. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance. Bao G; Dong H; Zhu Y; Mao S; Zhang T; Zhang Y; Chen Z; Li Y Biochem Biophys Res Commun; 2014 Aug; 450(4):1612-8. PubMed ID: 25044112 [TBL] [Abstract][Full Text] [Related]
11. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Alsaker KV; Paredes C; Papoutsakis ET Biotechnol Bioeng; 2010 Apr; 105(6):1131-47. PubMed ID: 19998280 [TBL] [Abstract][Full Text] [Related]
12. [Screening of Clostridium strains through ribosome engineering for improved butanol production]. Chen L; Shang G; Yuan W; Wu Y; Bai F Sheng Wu Gong Cheng Xue Bao; 2012 Sep; 28(9):1048-58. PubMed ID: 23289307 [TBL] [Abstract][Full Text] [Related]
13. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. Mao S; Luo Y; Zhang T; Li J; Bao G; Zhu Y; Chen Z; Zhang Y; Li Y; Ma Y J Proteome Res; 2010 Jun; 9(6):3046-61. PubMed ID: 20426490 [TBL] [Abstract][Full Text] [Related]
14. Cap0037, a Novel Global Regulator of Clostridium acetobutylicum Metabolism. Nguyen NP; Linder S; Flitsch SK; Schiel-Bengelsdorf B; Dürre P; Soucaille P mBio; 2016 Oct; 7(5):. PubMed ID: 27703070 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum. Jia K; Zhang Y; Li Y PLoS One; 2012; 7(6):e38815. PubMed ID: 22768047 [TBL] [Abstract][Full Text] [Related]
16. Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Montanari S; Oliver A; Salerno P; Mena A; Bertoni G; Tümmler B; Cariani L; Conese M; Döring G; Bragonzi A Microbiology (Reading); 2007 May; 153(Pt 5):1445-1454. PubMed ID: 17464058 [TBL] [Abstract][Full Text] [Related]
17. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. Hu S; Zheng H; Gu Y; Zhao J; Zhang W; Yang Y; Wang S; Zhao G; Yang S; Jiang W BMC Genomics; 2011 Feb; 12():93. PubMed ID: 21284892 [TBL] [Abstract][Full Text] [Related]
18. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Xue C; Zhao J; Chen L; Yang ST; Bai F Biotechnol Adv; 2017; 35(2):310-322. PubMed ID: 28163194 [TBL] [Abstract][Full Text] [Related]
19. Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. Cai X; Bennett GN J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1013-25. PubMed ID: 20931261 [TBL] [Abstract][Full Text] [Related]
20. A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum--cellular behavior in adaptation to n-butanol. Schwarz KM; Kuit W; Grimmler C; Ehrenreich A; Kengen SW J Biotechnol; 2012 Oct; 161(3):366-77. PubMed ID: 22484128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]