BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 24214993)

  • 1. CPLM: a database of protein lysine modifications.
    Liu Z; Wang Y; Gao T; Pan Z; Cheng H; Yang Q; Cheng Z; Guo A; Ren J; Xue Y
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D531-6. PubMed ID: 24214993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PLMD: An updated data resource of protein lysine modifications.
    Xu H; Zhou J; Lin S; Deng W; Zhang Y; Xue Y
    J Genet Genomics; 2017 May; 44(5):243-250. PubMed ID: 28529077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CPLM 4.0: an updated database with rich annotations for protein lysine modifications.
    Zhang W; Tan X; Lin S; Gou Y; Han C; Zhang C; Ning W; Wang C; Xue Y
    Nucleic Acids Res; 2022 Jan; 50(D1):D451-D459. PubMed ID: 34581824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Specific Systematic Analysis of Lysine Modification Crosstalk.
    Xu HD; Wang LN; Wen PP; Shi SP; Qiu JD
    Proteomics; 2018 May; 18(9):e1700292. PubMed ID: 29520963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPLA 1.0: an integrated database of protein lysine acetylation.
    Liu Z; Cao J; Gao X; Zhou Y; Wen L; Yang X; Yao X; Ren J; Xue Y
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D1029-34. PubMed ID: 21059677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global proteomic analyses of lysine acetylation, malonylation, succinylation, and crotonylation in human sperm reveal their involvement in male fertility.
    Tian Y; Wang H; Pan T; Hu X; Ding J; Chen Y; Li J; Chen H; Luo T
    J Proteomics; 2024 May; 303():105213. PubMed ID: 38797435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Analysis of the Lysine Succinylome and Protein Co-modifications in Developing Rice Seeds.
    Meng X; Mujahid H; Zhang Y; Peng X; Redoña ED; Wang C; Peng Z
    Mol Cell Proteomics; 2019 Dec; 18(12):2359-2372. PubMed ID: 31492684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell signaling, post-translational protein modifications and NMR spectroscopy.
    Theillet FX; Smet-Nocca C; Liokatis S; Thongwichian R; Kosten J; Yoon MK; Kriwacki RW; Landrieu I; Lippens G; Selenko P
    J Biomol NMR; 2012 Nov; 54(3):217-36. PubMed ID: 23011410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assays for Acetylation and Other Acylations of Lysine Residues.
    Pelletier N; Grégoire S; Yang XJ
    Curr Protoc Protein Sci; 2017 Feb; 87():14.11.1-14.11.18. PubMed ID: 28150880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially.
    Mujahid H; Meng X; Xing S; Peng X; Wang C; Peng Z
    J Proteomics; 2018 Jan; 170():88-98. PubMed ID: 28882676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The growing landscape of lysine acetylation links metabolism and cell signalling.
    Choudhary C; Weinert BT; Nishida Y; Verdin E; Mann M
    Nat Rev Mol Cell Biol; 2014 Aug; 15(8):536-50. PubMed ID: 25053359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Lysine Acetylation and Acetylation-like Acylation In Vitro and In Vivo.
    Yan K; Mousavi N; Yang XJ
    Curr Protoc; 2023 May; 3(5):e738. PubMed ID: 37184117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences.
    Chen L; Chen Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38066710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription.
    Barnes CE; English DM; Cowley SM
    Essays Biochem; 2019 Apr; 63(1):97-107. PubMed ID: 30940741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    Mol Biosyst; 2012 Apr; 8(5):1520-7. PubMed ID: 22402705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LasB and CbpD Virulence Factors of Pseudomonas aeruginosa Carry Multiple Post-Translational Modifications on Their Lysine Residues.
    Gaviard C; Cosette P; Jouenne T; Hardouin J
    J Proteome Res; 2019 Mar; 18(3):923-933. PubMed ID: 30672296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation.
    Meng X; Lv Y; Mujahid H; Edelmann MJ; Zhao H; Peng X; Peng Z
    Biochim Biophys Acta Proteins Proteom; 2018 Mar; 1866(3):451-463. PubMed ID: 29313810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Prediction of Protein Epsilon Lysine Acetylation Sites Based on a Feature Selection Method.
    Gao J; Tao XW; Zhao J; Feng YM; Cai YD; Zhang N
    Comb Chem High Throughput Screen; 2017; 20(7):629-637. PubMed ID: 28292250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein lysine acylation and cysteine succination by intermediates of energy metabolism.
    Lin H; Su X; He B
    ACS Chem Biol; 2012 Jun; 7(6):947-60. PubMed ID: 22571489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.