These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 24215162)

  • 1. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities.
    Zhang Q; Wen X; Li G; Ruan Q; Wang J; Xiong Q
    ACS Nano; 2013 Dec; 7(12):11071-8. PubMed ID: 24215162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing.
    Cetin AE; Altug H
    ACS Nano; 2012 Nov; 6(11):9989-95. PubMed ID: 23092386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities.
    Sonnefraud Y; Verellen N; Sobhani H; Vandenbosch GA; Moshchalkov VV; Van Dorpe P; Nordlander P; Maier SA
    ACS Nano; 2010 Mar; 4(3):1664-70. PubMed ID: 20155967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P; Schaafsma MC; Rodriguez SR; Zhang Y; Crego-Calama M; Brongersma SH; Gómez Rivas J
    ACS Nano; 2011 Jun; 5(6):5151-7. PubMed ID: 21574624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of plasmonic Fano resonance in metal-hole/split-ring-resonator metamaterials disclosed by temporal coupled-mode theory.
    Deng Q; Lin H; Li ZY
    Opt Express; 2023 Sep; 31(20):32322-32334. PubMed ID: 37859038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
    Gallinet B; Martin OJ
    ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance.
    Chen CY; Un IW; Tai NH; Yen TJ
    Opt Express; 2009 Aug; 17(17):15372-80. PubMed ID: 19688015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Cao JX; Zhu SN; Zhang X
    Opt Express; 2010 Oct; 18(21):22412-7. PubMed ID: 20941141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fano resonance in dual-disk ring plasmonic nanostructures.
    Niu L; Zhang JB; Fu YH; Kulkarni S; Luky Anchuk B
    Opt Express; 2011 Nov; 19(23):22974-81. PubMed ID: 22109176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures.
    Fu YH; Zhang JB; Yu YF; Luk'yanchuk B
    ACS Nano; 2012 Jun; 6(6):5130-7. PubMed ID: 22577794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances.
    Sheikholeslami SN; García-Etxarri A; Dionne JA
    Nano Lett; 2011 Sep; 11(9):3927-34. PubMed ID: 21819059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs).
    Lahiri B; McMeekin SG; De la Rue RM; Johnson NP
    Opt Express; 2013 Apr; 21(8):9343-52. PubMed ID: 23609645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A standing-wave interpretation of plasmon resonance excitation in split-ring resonators.
    Chen WY; Lin CH
    Opt Express; 2010 Jun; 18(13):14280-92. PubMed ID: 20588563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional double Fano resonances in plasmonic hetero-oligomers.
    Artar A; Yanik AA; Altug H
    Nano Lett; 2011 Sep; 11(9):3694-700. PubMed ID: 21806006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.
    Tang Y; Zhang Z; Wang R; Hai Z; Xue C; Zhang W; Yan S
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28383510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization tunable transmission through plasmonic arrays of elliptical nanopores.
    Lovera P; Jones D; Corbett B; O'Riordan A
    Opt Express; 2012 Nov; 20(23):25325-32. PubMed ID: 23187349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation.
    Zhang S; Li GC; Chen Y; Zhu X; Liu SD; Lei DY; Duan H
    ACS Nano; 2016 Dec; 10(12):11105-11114. PubMed ID: 28024358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.