These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24215596)

  • 1. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.
    Zhu L; Schade GW; Nielsen CJ
    Environ Sci Technol; 2013 Dec; 47(24):14306-14. PubMed ID: 24215596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of airflow on odorants' emissions in a model pig house - A laboratory study using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS).
    Saha CK; Feilberg A; Zhang G; Adamsen AP
    Sci Total Environ; 2011 Dec; 410-411():161-71. PubMed ID: 21978617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling atmospheric oxidation of 2-aminoethanol (MEA) emitted from post-combustion capture using WRF-Chem.
    Karl M; Svendby T; Walker SE; Velken AS; Castell N; Solberg S
    Sci Total Environ; 2015 Sep; 527-528():185-202. PubMed ID: 25958366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human and environmental impact assessment of postcombustion CO2 capture focusing on emissions from amine-based scrubbing solvents to air.
    Veltman K; Singh B; Hertwich EG
    Environ Sci Technol; 2010 Feb; 44(4):1496-502. PubMed ID: 20095561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine.
    Greer T; Bedelbayev A; Igreja JM; Gomes JF; Lie B
    Environ Technol; 2010 Jan; 31(1):107-15. PubMed ID: 20232684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerosol Emissions of Amine-Based CO
    Yi N; Fang M; Di W; Xia Z; Wang T; Wang Q
    Environ Sci Technol; 2021 Apr; 55(8):5152-5160. PubMed ID: 33492124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward understanding amines and their degradation products from postcombustion CO2 capture processes with aerosol mass spectrometry.
    Ge X; Shaw SL; Zhang Q
    Environ Sci Technol; 2014 May; 48(9):5066-75. PubMed ID: 24617831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study.
    Xie HB; Li C; He N; Wang C; Zhang S; Chen J
    Environ Sci Technol; 2014; 48(3):1700-6. PubMed ID: 24438015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas phase oxidation of monoethanolamine (MEA) with OH radical and ozone: kinetics, products, and particles.
    Borduas N; Abbatt JP; Murphy JG
    Environ Sci Technol; 2013 Jun; 47(12):6377-83. PubMed ID: 23688148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of humidity, CO
    Trefz P; Schubert JK; Miekisch W
    J Breath Res; 2018 Mar; 12(2):026016. PubMed ID: 29199640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. En Route to Zero Emissions for Power and Industry with Amine-Based Post-combustion Capture.
    Danaci D; Bui M; Petit C; Mac Dowell N
    Environ Sci Technol; 2021 Aug; 55(15):10619-10632. PubMed ID: 34241997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile organic compounds at swine facilities: a critical review.
    Ni JQ; Robarge WP; Xiao C; Heber AJ
    Chemosphere; 2012 Oct; 89(7):769-88. PubMed ID: 22682363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry.
    Cappellin L; Karl T; Probst M; Ismailova O; Winkler PM; Soukoulis C; Aprea E; Märk TD; Gasperi F; Biasioli F
    Environ Sci Technol; 2012 Feb; 46(4):2283-90. PubMed ID: 22296026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time carbon allocation into biogenic volatile organic compounds (BVOCs) and respiratory carbon dioxide (CO2) traced by PTR-TOF-MS, 13CO2 laser spectroscopy and 13C-pyruvate labelling.
    Fasbender L; Yáñez-Serrano AM; Kreuzwieser J; Dubbert D; Werner C
    PLoS One; 2018; 13(9):e0204398. PubMed ID: 30252899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO
    van der Giesen C; Meinrenken CJ; Kleijn R; Sprecher B; Lackner KS; Kramer GJ
    Environ Sci Technol; 2017 Jan; 51(2):1024-1034. PubMed ID: 27935700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Study of the CO2 Absorption in Some Solvent-Free Alkanolamines and in Aqueous Monoethanolamine (MEA).
    Barzagli F; Mani F; Peruzzini M
    Environ Sci Technol; 2016 Jul; 50(13):7239-46. PubMed ID: 27294832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Stability of Particle-Phase Monoethanolamine Salts.
    Fan X; Dawson J; Chen M; Qiu C; Khalizov A
    Environ Sci Technol; 2018 Feb; 52(4):2409-2417. PubMed ID: 29368508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Perspectives on CO
    Huang J; Hartmann H; Hellén H; Wisthaler A; Perreca E; Weinhold A; Rücker A; van Dam NM; Gershenzon J; Trumbore S; Behrendt T
    Environ Sci Technol; 2018 Dec; 52(23):13811-13823. PubMed ID: 30335995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Dissolved Metals on N-Nitrosamine Formation under Amine-based CO2 Capture Conditions.
    Wang Z; Mitch WA
    Environ Sci Technol; 2015 Oct; 49(19):11974-81. PubMed ID: 26335609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process.
    Choi WJ; Seo JB; Jang SY; Jung JH; Oh KJ
    J Environ Sci (China); 2009; 21(7):907-13. PubMed ID: 19862955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.