These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24215640)
1. Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS. Grohme MA; Soler RF; Wink M; Frohme M Biotechniques; 2013 Nov; 55(5):253-6. PubMed ID: 24215640 [TBL] [Abstract][Full Text] [Related]
2. The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to PacBio. Wei N; Bemmels JB; Dick CW Mol Ecol Resour; 2014 Sep; 14(5):953-65. PubMed ID: 24576200 [TBL] [Abstract][Full Text] [Related]
3. Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. Schoebel CN; Brodbeck S; Buehler D; Cornejo C; Gajurel J; Hartikainen H; Keller D; Leys M; Ríčanová S; Segelbacher G; Werth S; Csencsics D J Evol Biol; 2013 Mar; 26(3):600-11. PubMed ID: 23331991 [TBL] [Abstract][Full Text] [Related]
4. De novo discovery and multiplexed amplification of microsatellite markers for black alder (Alnus glutinosa) and related species using SSR-enriched shotgun pyrosequencing. Lepais O; Bacles CF J Hered; 2011; 102(5):627-32. PubMed ID: 21705491 [TBL] [Abstract][Full Text] [Related]
5. Optimizing selection of microsatellite loci from 454 pyrosequencing via post-sequencing bioinformatic analyses. Fernandez-Silva I; Toonen RJ Methods Mol Biol; 2013; 1006():101-20. PubMed ID: 23546786 [TBL] [Abstract][Full Text] [Related]
6. Microsatellite markers from the Ion Torrent: a multi-species contrast to 454 shotgun sequencing. Elliott CP; Enright NJ; Allcock RJ; Gardner MG; Meglécz E; Anthony J; Krauss SL Mol Ecol Resour; 2014 May; 14(3):554-68. PubMed ID: 24165148 [TBL] [Abstract][Full Text] [Related]
7. Rapid, economical single-nucleotide polymorphism and microsatellite discovery based on de novo assembly of a reduced representation genome in a non-model organism: a case study of Atlantic cod Gadus morhua. Carlsson J; Gauthier DT; Carlsson JE; Coughlan JP; Dillane E; Fitzgerald RD; Keating U; McGinnity P; Mirimin L; Cross TF J Fish Biol; 2013 Mar; 82(3):944-58. PubMed ID: 23464553 [TBL] [Abstract][Full Text] [Related]
8. Microsatellite discovery by deep sequencing of enriched genomic libraries. Santana Q; Coetzee M; Steenkamp E; Mlonyeni O; Hammond G; Wingfield M; Wingfield B Biotechniques; 2009 Mar; 46(3):217-23. PubMed ID: 19317665 [TBL] [Abstract][Full Text] [Related]
9. Next-generation sequencing for high-throughput molecular ecology: a step-by-step protocol for targeted multilocus genotyping by pyrosequencing. Puritz JB; Toonen RJ Methods Mol Biol; 2013; 1006():89-99. PubMed ID: 23546785 [TBL] [Abstract][Full Text] [Related]
10. High-throughput microsatellite marker development in two sparid species and verification of their transferability in the family Sparidae. Reid K; Hoareau TB; Bloomer P Mol Ecol Resour; 2012 Jul; 12(4):740-52. PubMed ID: 22510367 [TBL] [Abstract][Full Text] [Related]
11. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Zalapa JE; Cuevas H; Zhu H; Steffan S; Senalik D; Zeldin E; McCown B; Harbut R; Simon P Am J Bot; 2012 Feb; 99(2):193-208. PubMed ID: 22186186 [TBL] [Abstract][Full Text] [Related]
12. Microsatellite development for the relictual conifer Araucaria araucana (Araucariaceae) using next-generation sequencing. Martín MA; Mattioni C; Lusini I; Drake F; Cherubini M; Herrera MA; Villani F; Martín LM Am J Bot; 2012 May; 99(5):e213-5. PubMed ID: 22539504 [TBL] [Abstract][Full Text] [Related]
13. No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Westbrook CJ; Karl JA; Wiseman RW; Mate S; Koroleva G; Garcia K; Sanchez-Lockhart M; O'Connor DH; Palacios G Hum Immunol; 2015 Dec; 76(12):891-6. PubMed ID: 26028281 [TBL] [Abstract][Full Text] [Related]
14. Microsatellite DNA capture from enriched libraries. Gonzalez EG; Zardoya R Methods Mol Biol; 2013; 1006():67-87. PubMed ID: 23546784 [TBL] [Abstract][Full Text] [Related]
15. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Nakano K; Shiroma A; Shimoji M; Tamotsu H; Ashimine N; Ohki S; Shinzato M; Minami M; Nakanishi T; Teruya K; Satou K; Hirano T Hum Cell; 2017 Jul; 30(3):149-161. PubMed ID: 28364362 [TBL] [Abstract][Full Text] [Related]
16. Clustering of circular consensus sequences: accurate error correction and assembly of single molecule real-time reads from multiplexed amplicon libraries. Francis F; Dumas MD; Davis SB; Wisser RJ BMC Bioinformatics; 2018 Aug; 19(1):302. PubMed ID: 30126356 [TBL] [Abstract][Full Text] [Related]
17. Rapid microsatellite development for water striders by next-generation sequencing. Perry JC; Rowe L J Hered; 2011; 102(1):125-9. PubMed ID: 20810468 [TBL] [Abstract][Full Text] [Related]
18. Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology. Dutta N; Singh RK; Mohindra V; Pathak A; Kumar R; Sah P; Mandal S; Kaur G; Lal KK Mol Biol Rep; 2019 Feb; 46(1):41-49. PubMed ID: 30539381 [TBL] [Abstract][Full Text] [Related]
19. When technology meets conservation: increased microsatellite marker production using 454 genome sequencing on the endangered Okaloosa Darter (Etheostoma okaloosae). Saarinen EV; Austin JD J Hered; 2010; 101(6):784-8. PubMed ID: 20624755 [TBL] [Abstract][Full Text] [Related]
20. Rapid development and screening of microsatellite loci for Artibeus lituratus and their utility for six related species within Phyllostomidae. McCulloch ES; Stevens RD Mol Ecol Resour; 2011 Sep; 11(5):903-13. PubMed ID: 21592315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]