BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24216193)

  • 1. Applications of resistive heating in gas chromatography: a review.
    Jacobs MR; Hilder EF; Shellie RA
    Anal Chim Acta; 2013 Nov; 803():2-14. PubMed ID: 24216193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Person-portable gas chromatography: rapid temperature program operation through resistive heating of columns with inherently low thermal mass properties.
    Smith PA
    J Chromatogr A; 2012 Oct; 1261():37-45. PubMed ID: 22770386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas chromatography using resistive heating technology.
    Wang A; Tolley HD; Lee ML
    J Chromatogr A; 2012 Oct; 1261():46-57. PubMed ID: 22663978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent applications of liquid chromatography-mass spectrometry in forensic science.
    Wood M; Laloup M; Samyn N; del Mar Ramirez Fernandez M; de Bruijn EA; Maes RA; De Boeck G
    J Chromatogr A; 2006 Oct; 1130(1):3-15. PubMed ID: 16716330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A direct resistively heated gas chromatography column with heating and sensing on the same nickel element.
    Stearns SD; Cai H; Koehn JA; Brisbin M; Cowles C; Bishop C; Puente S; Ashworth D
    J Chromatogr A; 2010 Jul; 1217(27):4629-38. PubMed ID: 20564802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multidimensional gas chromatography using microfluidic switching and low thermal mass gas chromatography for the characterization of targeted volatile organic compounds.
    Luong J; Gras R; Hawryluk M; Shellie RA; Cortes HJ
    J Chromatogr A; 2013 May; 1288():105-10. PubMed ID: 23523064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internally heated membrane interfaced to a gas chromatography flame ionization detector.
    Kanu AB; Thomas CL
    Talanta; 2013 Jul; 111():215-23. PubMed ID: 23622547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabricated planar glass gas chromatography with photoionization detection.
    Lewis AC; Hamilton JF; Rhodes CN; Halliday J; Bartle KD; Homewood P; Grenfell RJ; Goody B; Harling AM; Brewer P; Vargha G; Milton MJ
    J Chromatogr A; 2010 Jan; 1217(5):768-74. PubMed ID: 20022335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a high-performance portable GC with a chemiresistor array detector.
    Zhong Q; Steinecker WH; Zellers ET
    Analyst; 2009 Feb; 134(2):283-93. PubMed ID: 19173051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards smaller and faster gas chromatography-mass spectrometry systems for field chemical detection.
    Smith PA; Sng MT; Eckenrode BA; Leow SY; Koch D; Erickson RP; Jackson Lepage CR; Hook GL
    J Chromatogr A; 2005 Mar; 1067(1-2):285-94. PubMed ID: 15844534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual channel gas chromatograph for atmospheric analysis of volatile organic compounds including oxygenated and monoterpene compounds.
    Hopkins JR; Jones CE; Lewis AC
    J Environ Monit; 2011 Aug; 13(8):2268-76. PubMed ID: 21701721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Microwave-Assisted Process technology for HAPSITE's headspace analysis of volatile organic compounds (VOCs).
    Bélanger JM; Paré JR; Turpin R; Schaefer J; Chuang CW
    J Hazard Mater; 2007 Jun; 145(1-2):336-8. PubMed ID: 17267110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast temperature programming on a stainless-steel narrow-bore capillary column by direct resistive heating for fast gas chromatography.
    Xu F; Guan W; Yao G; Guan Y
    J Chromatogr A; 2008 Apr; 1186(1-2):183-8. PubMed ID: 17884064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A purge and trap integrated microGC platform for chemical identification in aqueous samples.
    Akbar M; Narayanan S; Restaino M; Agah M
    Analyst; 2014 Jul; 139(13):3384-92. PubMed ID: 24837988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid column heating method for subcritical water chromatography.
    Fogwill MO; Thurbide KB
    J Chromatogr A; 2007 Jan; 1139(2):199-205. PubMed ID: 17126845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.
    Kim SJ; Reidy SM; Block BP; Wise KD; Zellers ET; Kurabayashi K
    Lab Chip; 2010 Jul; 10(13):1647-54. PubMed ID: 20556268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on Micro-Gas Analyzer Systems: Feasibility, Separations and Applications.
    Lussac E; Barattin R; Cardinael P; Agasse V
    Crit Rev Anal Chem; 2016 Nov; 46(6):455-68. PubMed ID: 26908000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolved gas composition monitoring by repetitive injection gas chromatography.
    White RL
    J Chromatogr A; 2015 Nov; 1421():129-36. PubMed ID: 26250962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.
    Woolfenden E
    J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of high-speed gas chromatography using synchronized dual-valve injection and resistively heated temperature programming.
    Reid VR; McBrady AD; Synovec RE
    J Chromatogr A; 2007 May; 1148(2):236-43. PubMed ID: 17386929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.