BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24216207)

  • 21. Integration of on-chip isotachophoresis and functionalized hydrogels for enhanced-sensitivity nucleic acid detection.
    Garcia-Schwarz G; Santiago JG
    Anal Chem; 2012 Aug; 84(15):6366-9. PubMed ID: 22803507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2-D t-ITP/CZE determination of clinical urinary proteins using a microfluidic-chip capillary electrophoresis device.
    Wu R; Yeung WS; Fung YS
    Electrophoresis; 2011 Nov; 32(23):3406-14. PubMed ID: 22134979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioanalyzer chips can be used interchangeably for many analyses of DNA or RNA.
    Davies J; Denyer T; Hadfield J
    Biotechniques; 2016 Apr; 60(4):197-9. PubMed ID: 27071608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics.
    Zhao S; Cong H; Pan T
    Lab Chip; 2009 Apr; 9(8):1128-32. PubMed ID: 19350095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices.
    Wainright A; Nguyen UT; Bjornson T; Boone TD
    Electrophoresis; 2003 Nov; 24(21):3784-92. PubMed ID: 14613206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of inorganic ions using microfluidic devices.
    Evenhuis CJ; Guijt RM; Macka M; Haddad PR
    Electrophoresis; 2004 Nov; 25(21-22):3602-24. PubMed ID: 15565711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 10,000-fold concentration increase of the biomarker cardiac troponin I in a reducing union microfluidic chip using cationic isotachophoresis.
    Bottenus D; Jubery TZ; Ouyang Y; Dong WJ; Dutta P; Ivory CF
    Lab Chip; 2011 Mar; 11(5):890-8. PubMed ID: 21416810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent progress in analytical capillary isotachophoresis.
    Malá Z; Gebauer P; Boček P
    Electrophoresis; 2013 Jan; 34(1):19-28. PubMed ID: 23161365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A rapidly-prototyped microfluidic device for size-based nucleic acid fractionation using isotachophoresis.
    Eid C; Branda SS; Meagher RJ
    Analyst; 2017 Jun; 142(12):2094-2099. PubMed ID: 28503691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and Optimization of Isotachophoresis Parameters for Pacific Blue Succinimidyl Ester Dye on a PDMS Microfluidic Chip.
    Somaweera H; Estlack Z; Devadhasan JP; Kim J; Kim J
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33105673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotachophoresis: Theory and Microfluidic Applications.
    Ramachandran A; Santiago JG
    Chem Rev; 2022 Aug; 122(15):12904-12976. PubMed ID: 35732018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples.
    Bhattacharyya A; Klapperich CM
    Biomed Microdevices; 2007 Apr; 9(2):245-51. PubMed ID: 17165125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field enhanced bacterial sample stacking in isotachophoresis using wide-bore capillaries.
    Oukacine F; Quirino JP; Destoumieux-Garzón D; Cottet H
    J Chromatogr A; 2012 Dec; 1268():180-4. PubMed ID: 23137865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic chips designed for measuring biomolecules through a microbead-based quantum dot fluorescence assay.
    Yun KS; Lee D; Kim HS; Yoon E
    Methods Mol Biol; 2009; 544():53-67. PubMed ID: 19488693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells.
    Kuriyama K; Shintaku H; Santiago JG
    Electrophoresis; 2015 Jul; 36(14):1658-62. PubMed ID: 25820552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrokinetics for sample preparation of biological molecules in biological samples using microfluidic systems.
    Shallan AI; Guijt RM; Breadmore MC
    Bioanalysis; 2014; 6(14):1961-74. PubMed ID: 25158966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network.
    Mujika M; Arana S; Castaño E; Tijero M; Vilares R; Ruano-López JM; Cruz A; Sainz L; Berganza J
    Biosens Bioelectron; 2009 Jan; 24(5):1253-8. PubMed ID: 18760584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate.
    Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z
    Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.
    Wang CH; Lee GB
    Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.