These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 24216230)
1. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited. Dražević E; Košutić K; Freger V Water Res; 2014 Feb; 49():444-52. PubMed ID: 24216230 [TBL] [Abstract][Full Text] [Related]
2. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study. Freger V Environ Sci Technol; 2004 Jun; 38(11):3168-75. PubMed ID: 15224751 [TBL] [Abstract][Full Text] [Related]
3. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Yüksel S; Kabay N; Yüksel M J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784 [TBL] [Abstract][Full Text] [Related]
4. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926 [TBL] [Abstract][Full Text] [Related]
5. Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films. Kwak SY; Jung SG; Kim SH Environ Sci Technol; 2001 Nov; 35(21):4334-40. PubMed ID: 11718351 [TBL] [Abstract][Full Text] [Related]
6. Controlled TiO Zhou X; Zhao YY; Kim SR; Elimelech M; Hu S; Kim JH Environ Sci Technol; 2018 Dec; 52(24):14311-14320. PubMed ID: 30516046 [TBL] [Abstract][Full Text] [Related]
7. Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of a Mycobacterium sp. to cellulose acetate and aromatic polyamide reverse osmosis membranes. Campbell P; Srinivasan R; Knoell T; Phipps D; Ishida K; Safarik J; Cormack T; Ridgway H Biotechnol Bioeng; 1999 Sep; 64(5):527-44. PubMed ID: 10404233 [TBL] [Abstract][Full Text] [Related]
8. Does hindered transport theory apply to desalination membranes? Dražević E; Košutić K; Kolev V; Freger V Environ Sci Technol; 2014 Oct; 48(19):11471-8. PubMed ID: 25137614 [TBL] [Abstract][Full Text] [Related]
9. Rejection of trace organic compounds by high-pressure membranes. Kim TU; Amy G; Drewes JE Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes. Liu YL; Wang XM; Yang HW; Xie YF Chemosphere; 2018 Jun; 200():36-47. PubMed ID: 29471167 [TBL] [Abstract][Full Text] [Related]
11. Permeability of uncharged organic molecules in reverse osmosis desalination membranes. Dražević E; Košutić K; Svalina M; Catalano J Water Res; 2017 Jun; 116():13-22. PubMed ID: 28292676 [TBL] [Abstract][Full Text] [Related]
12. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications. Xie M; Nghiem LD; Price WE; Elimelech M Water Res; 2014 Feb; 49():265-74. PubMed ID: 24345822 [TBL] [Abstract][Full Text] [Related]
13. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Do VT; Tang CY; Reinhard M; Leckie JO Environ Sci Technol; 2012 Jan; 46(2):852-9. PubMed ID: 22221176 [TBL] [Abstract][Full Text] [Related]
14. Facile Surface Modification of Polyamide Membranes Using UV-Photooxidation Improves Permeability and Reduces Natural Organic Matter Fouling. Rho H; Im SJ; Alrehaili O; Lee S; Jang A; Perreault F; Westerhoff P Environ Sci Technol; 2021 May; 55(10):6984-6994. PubMed ID: 33949853 [TBL] [Abstract][Full Text] [Related]
15. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes. Drazevic E; Bason S; Kosutic K; Freger V Environ Sci Technol; 2012 Mar; 46(6):3377-83. PubMed ID: 22260225 [TBL] [Abstract][Full Text] [Related]
16. Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation. Coutinho de Paula E; Gomes JCL; Amaral MCS Water Sci Technol; 2017 Jul; 76(3-4):605-622. PubMed ID: 28759443 [TBL] [Abstract][Full Text] [Related]
17. Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations. Chen X; Boo C; Yip NY Water Res; 2021 Aug; 201():117311. PubMed ID: 34192614 [TBL] [Abstract][Full Text] [Related]
18. High permeability and salt rejection reverse osmosis by a zeolite nano-membrane. Liu Y; Chen X Phys Chem Chem Phys; 2013 May; 15(18):6817-24. PubMed ID: 23546302 [TBL] [Abstract][Full Text] [Related]
19. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936 [TBL] [Abstract][Full Text] [Related]
20. Interactions of Organics within Hydrated Selective Layer of Reverse Osmosis Desalination Membrane: A Combined Experimental and Computational Study. Ghoufi A; Dražević E; Szymczyk A Environ Sci Technol; 2017 Mar; 51(5):2714-2719. PubMed ID: 28169536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]