These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 24216230)
21. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes. Coronell O; Mariñas BJ; Cahill DG Environ Sci Technol; 2011 May; 45(10):4513-20. PubMed ID: 21488633 [TBL] [Abstract][Full Text] [Related]
22. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Lau WJ; Gray S; Matsuura T; Emadzadeh D; Chen JP; Ismail AF Water Res; 2015 Sep; 80():306-24. PubMed ID: 26011136 [TBL] [Abstract][Full Text] [Related]
23. Spray Layer-by-Layer Assembled Clay Composite Thin Films as Selective Layers in Reverse Osmosis Membranes. Kovacs JR; Liu C; Hammond PT ACS Appl Mater Interfaces; 2015 Jun; 7(24):13375-83. PubMed ID: 26058008 [TBL] [Abstract][Full Text] [Related]
24. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. Wang F; Zheng T; Xiong R; Wang P; Ma J Chemosphere; 2019 Oct; 233():524-531. PubMed ID: 31185336 [TBL] [Abstract][Full Text] [Related]
25. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater. Valentino L; Renkens T; Maugin T; Croué JP; Mariñas BJ Environ Sci Technol; 2015 Feb; 49(4):2301-9. PubMed ID: 25590510 [TBL] [Abstract][Full Text] [Related]
26. Development of robust organosilica membranes for reverse osmosis. Xu R; Wang J; Kanezashi M; Yoshioka T; Tsuru T Langmuir; 2011 Dec; 27(23):13996-9. PubMed ID: 22040055 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Xie M; Nghiem LD; Price WE; Elimelech M Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269 [TBL] [Abstract][Full Text] [Related]
28. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide. Coronell O; Mi B; Mariñas BJ; Cahill DG Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291 [TBL] [Abstract][Full Text] [Related]
29. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes. Do VT; Tang CY; Reinhard M; Leckie JO Water Res; 2012 Oct; 46(16):5217-23. PubMed ID: 22818949 [TBL] [Abstract][Full Text] [Related]
30. Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal. Hidalgo AM; León G; Gómez M; Murcia MD; Gómez E; Gómez JL Environ Technol; 2011 Oct; 32(13-14):1497-502. PubMed ID: 22329140 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly. Saren Q; Qiu CQ; Tang CY Environ Sci Technol; 2011 Jun; 45(12):5201-8. PubMed ID: 21591607 [TBL] [Abstract][Full Text] [Related]
32. Effects of DMSO and glycerol additives on the property of polyamide reverse osmosis membrane. Wu F; Liu X; Au C Water Sci Technol; 2016 Oct; 74(7):1619-1625. PubMed ID: 27763342 [TBL] [Abstract][Full Text] [Related]
33. Ionization behavior, stoichiometry of association, and accessibility of functional groups in the active layers of reverse osmosis and nanofiltration membranes. Coronell O; González MI; Mariñas BJ; Cahill DG Environ Sci Technol; 2010 Sep; 44(17):6808-14. PubMed ID: 20701293 [TBL] [Abstract][Full Text] [Related]
34. Study of polyamide thin film characteristics impact on permeability/selectivity performance and fouling behavior of forward osmosis membrane. Rastgar M; Shakeri A; Salehi H Environ Sci Pollut Res Int; 2019 Jan; 26(2):1181-1191. PubMed ID: 28871353 [TBL] [Abstract][Full Text] [Related]
35. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Yip NY; Elimelech M Environ Sci Technol; 2011 Dec; 45(23):10273-82. PubMed ID: 22022858 [TBL] [Abstract][Full Text] [Related]
36. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes. Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049 [TBL] [Abstract][Full Text] [Related]
37. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA. Steinle-Darling E; Zedda M; Plumlee MH; Ridgway HF; Reinhard M Water Res; 2007 Sep; 41(17):3959-67. PubMed ID: 17582457 [TBL] [Abstract][Full Text] [Related]
38. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Lind ML; Eumine Suk D; Nguyen TV; Hoek EM Environ Sci Technol; 2010 Nov; 44(21):8230-5. PubMed ID: 20942398 [TBL] [Abstract][Full Text] [Related]
39. Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure-Property Correlation. Song X; Gan B; Qi S; Guo H; Tang CY; Zhou Y; Gao C Environ Sci Technol; 2020 Mar; 54(6):3559-3569. PubMed ID: 32101410 [TBL] [Abstract][Full Text] [Related]
40. Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes. Wang J; Kingsbury RS; Perry LA; Coronell O Environ Sci Technol; 2017 Feb; 51(4):2295-2303. PubMed ID: 28084076 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]