BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 24216261)

  • 1. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite.
    Wei W; Cui J; Wei Z
    Chemosphere; 2014 Jun; 105():14-23. PubMed ID: 24216261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils.
    Debela F; Arocena JM; Thring RW; Whitcombe T
    Chemosphere; 2010 Jun; 80(4):450-6. PubMed ID: 20444487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid.
    Su X; Zhu J; Fu Q; Zuo J; Liu Y; Hu H
    J Environ Sci (China); 2015 Feb; 28():64-73. PubMed ID: 25662240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.
    Debela F; Arocena JM; Thring RW; Whitcombe T
    J Environ Manage; 2013 Feb; 116():156-62. PubMed ID: 23313859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils.
    Qin F; Shan XQ; Wei B
    Chemosphere; 2004 Oct; 57(4):253-63. PubMed ID: 15312723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of low-molecular-weight organic acids on hematite dissolution promoted by desferrioxamine B.
    Lin Q; Wang Y; Yang X; Ruan D; Wang S; Wei X; Qiu R
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):163-173. PubMed ID: 28455567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.
    Najafi S; Jalali M
    Environ Monit Assess; 2015 Sep; 187(9):585. PubMed ID: 26298186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Pb(II) immobilized by bone char meal and phosphate rock: characterization and kinetic study.
    Chen S; Ma Y; Chen L; Wang L; Guo H
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):24-32. PubMed ID: 19471990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].
    Xie L; Chen BS; Zhang JZ; Lu S; Jiang T
    Huan Jing Ke Xue; 2016 Mar; 37(3):1032-8. PubMed ID: 27337897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behaviors of Organic Ligands and Phosphate during Biochar-Driven Nitrate Adsorption in the Presence of Low-Molecular-Weight Organic Acids.
    Xiong W; Li Y; Ying J; Lin C; Qin J
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils.
    Wang Y; Li R; Liu W; Cheng L; Jiang Q; Zhang Y
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26674-26684. PubMed ID: 31297709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.
    Huang G; Su X; Rizwan MS; Zhu Y; Hu H
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16845-56. PubMed ID: 27197655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation.
    McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L
    Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks.
    Zhang Z; Guo G; Wang M; Zhang J; Wang Z; Li F; Chen H
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2861-2868. PubMed ID: 29143263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of lead immobilization by oxalic acid-activated phosphate rocks.
    Jiang G; Liu Y; Huang L; Fu Q; Deng Y; Hu H
    J Environ Sci (China); 2012; 24(5):919-25. PubMed ID: 22893971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil.
    Ash C; Tejnecký V; Borůvka L; Drábek O
    J Contam Hydrol; 2016 Apr; 187():18-30. PubMed ID: 26849837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.
    Onireti OO; Lin C
    Chemosphere; 2016 Mar; 147():352-60. PubMed ID: 26774299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum.
    Tian D; Wang W; Su M; Zheng J; Wu Y; Wang S; Li Z; Hu S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):21118-21126. PubMed ID: 29770937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination.
    Montiel-Rozas MM; Madejón E; Madejón P
    Environ Pollut; 2016 Sep; 216():273-281. PubMed ID: 27267743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids.
    Wei W; Wang Y; Wang Z; Han R; Li S; Wei Z; Zhang Y
    PLoS One; 2016; 11(8):e0160628. PubMed ID: 27494023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.