These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 24216261)
1. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite. Wei W; Cui J; Wei Z Chemosphere; 2014 Jun; 105():14-23. PubMed ID: 24216261 [TBL] [Abstract][Full Text] [Related]
2. Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils. Debela F; Arocena JM; Thring RW; Whitcombe T Chemosphere; 2010 Jun; 80(4):450-6. PubMed ID: 20444487 [TBL] [Abstract][Full Text] [Related]
3. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. Su X; Zhu J; Fu Q; Zuo J; Liu Y; Hu H J Environ Sci (China); 2015 Feb; 28():64-73. PubMed ID: 25662240 [TBL] [Abstract][Full Text] [Related]
4. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil. Debela F; Arocena JM; Thring RW; Whitcombe T J Environ Manage; 2013 Feb; 116():156-62. PubMed ID: 23313859 [TBL] [Abstract][Full Text] [Related]
5. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Qin F; Shan XQ; Wei B Chemosphere; 2004 Oct; 57(4):253-63. PubMed ID: 15312723 [TBL] [Abstract][Full Text] [Related]
6. Effect of low-molecular-weight organic acids on hematite dissolution promoted by desferrioxamine B. Lin Q; Wang Y; Yang X; Ruan D; Wang S; Wei X; Qiu R Environ Sci Pollut Res Int; 2018 Jan; 25(1):163-173. PubMed ID: 28455567 [TBL] [Abstract][Full Text] [Related]
7. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils. Najafi S; Jalali M Environ Monit Assess; 2015 Sep; 187(9):585. PubMed ID: 26298186 [TBL] [Abstract][Full Text] [Related]
8. Impact of low molecular weight organic acids on heavy metal(loid) desorption in biochar-amended paddy soil. Huang Q; Chen W; Gao J; Meng F; Cai Y; Wang Y; Yuan G Environ Geochem Health; 2024 Jul; 46(8):289. PubMed ID: 38970698 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Pb(II) immobilized by bone char meal and phosphate rock: characterization and kinetic study. Chen S; Ma Y; Chen L; Wang L; Guo H Arch Environ Contam Toxicol; 2010 Jan; 58(1):24-32. PubMed ID: 19471990 [TBL] [Abstract][Full Text] [Related]
10. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil]. Xie L; Chen BS; Zhang JZ; Lu S; Jiang T Huan Jing Ke Xue; 2016 Mar; 37(3):1032-8. PubMed ID: 27337897 [TBL] [Abstract][Full Text] [Related]
11. Behaviors of Organic Ligands and Phosphate during Biochar-Driven Nitrate Adsorption in the Presence of Low-Molecular-Weight Organic Acids. Xiong W; Li Y; Ying J; Lin C; Qin J Molecules; 2022 Sep; 27(18):. PubMed ID: 36144561 [TBL] [Abstract][Full Text] [Related]
12. Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils. Wang Y; Li R; Liu W; Cheng L; Jiang Q; Zhang Y Environ Sci Pollut Res Int; 2019 Sep; 26(26):26674-26684. PubMed ID: 31297709 [TBL] [Abstract][Full Text] [Related]
13. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Huang G; Su X; Rizwan MS; Zhu Y; Hu H Environ Sci Pollut Res Int; 2016 Aug; 23(16):16845-56. PubMed ID: 27197655 [TBL] [Abstract][Full Text] [Related]
14. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation. McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974 [TBL] [Abstract][Full Text] [Related]
15. Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks. Zhang Z; Guo G; Wang M; Zhang J; Wang Z; Li F; Chen H Environ Sci Pollut Res Int; 2018 Jan; 25(3):2861-2868. PubMed ID: 29143263 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of lead immobilization by oxalic acid-activated phosphate rocks. Jiang G; Liu Y; Huang L; Fu Q; Deng Y; Hu H J Environ Sci (China); 2012; 24(5):919-25. PubMed ID: 22893971 [TBL] [Abstract][Full Text] [Related]
17. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil. Ash C; Tejnecký V; Borůvka L; Drábek O J Contam Hydrol; 2016 Apr; 187():18-30. PubMed ID: 26849837 [TBL] [Abstract][Full Text] [Related]
18. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects. Onireti OO; Lin C Chemosphere; 2016 Mar; 147():352-60. PubMed ID: 26774299 [TBL] [Abstract][Full Text] [Related]
19. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum. Tian D; Wang W; Su M; Zheng J; Wu Y; Wang S; Li Z; Hu S Environ Sci Pollut Res Int; 2018 Jul; 25(21):21118-21126. PubMed ID: 29770937 [TBL] [Abstract][Full Text] [Related]
20. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Montiel-Rozas MM; Madejón E; Madejón P Environ Pollut; 2016 Sep; 216():273-281. PubMed ID: 27267743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]