These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 24216296)

  • 1. Reproducibility for linear and nonlinear micro-finite element simulations with density derived material properties of the human radius.
    Christen D; Zwahlen A; Müller R
    J Mech Behav Biomed Mater; 2014 Jan; 29():500-7. PubMed ID: 24216296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized loading conditions for homogenized finite element analysis of the distal sections of the radius.
    Schenk D; Zysset P
    Biomech Model Mechanobiol; 2023 Apr; 22(2):453-466. PubMed ID: 36477423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harmonizing finite element modelling for non-invasive strength estimation by high-resolution peripheral quantitative computed tomography.
    Whittier DE; Manske SL; Kiel DP; Bouxsein M; Boyd SK
    J Biomech; 2018 Oct; 80():63-71. PubMed ID: 30201250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure.
    Stipsitz M; Zysset PK; Pahr DH
    Biomech Model Mechanobiol; 2020 Jun; 19(3):861-874. PubMed ID: 31749070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.
    Varga P; Schwiedrzik J; Zysset PK; Fliri-Hofmann L; Widmer D; Gueorguiev B; Blauth M; Windolf M
    J Mech Behav Biomed Mater; 2016 Apr; 57():116-27. PubMed ID: 26708740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a new multiscale finite element analysis approach at the distal radius.
    Johnson JE; Troy KL
    Med Eng Phys; 2017 Jun; 44():16-24. PubMed ID: 28373011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the Inelastic Behaviour of Radius Segments: Damage-based Nonlinear Micro Finite Element Simulation vs Pistoia Criterion.
    Stipsitz M; Zysset PK; Pahr DH
    J Biomech; 2021 Feb; 116():110205. PubMed ID: 33476984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of finite element predicted bone strain in the human metatarsal.
    Fung A; Loundagin LL; Edwards WB
    J Biomech; 2017 Jul; 60():22-29. PubMed ID: 28668187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a validated glenoid trabecular density-modulus relationship.
    Knowles NK; G Langohr GD; Faieghi M; Nelson A; Ferreira LM
    J Mech Behav Biomed Mater; 2019 Feb; 90():140-145. PubMed ID: 30366304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear compliance of elastic layers to indentation.
    Fessel A; Döbereiner HG
    Biomech Model Mechanobiol; 2018 Apr; 17(2):419-438. PubMed ID: 29094275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of density-modulus relationships used in finite element modeling of the shoulder.
    Knowles NK; Langohr GDG; Faieghi M; Nelson AJ; Ferreira LM
    Med Eng Phys; 2019 Apr; 66():40-46. PubMed ID: 30833224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing.
    Rajapakse CS; Kobe EA; Batzdorf AS; Hast MW; Wehrli FW
    Bone; 2018 Mar; 108():71-78. PubMed ID: 29278746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific Hip Fracture Strength Assessment with Microstructural MR Imaging-based Finite Element Modeling.
    Rajapakse CS; Hotca A; Newman BT; Ramme A; Vira S; Kobe EA; Miller R; Honig S; Chang G
    Radiology; 2017 Jun; 283(3):854-861. PubMed ID: 27918708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of linear and nonlinear stepwise μFE displacement predictions to digital volume correlation measurements of trabecular bone biopsies.
    Stefanek P; Synek A; Dall'Ara E; Pahr DH
    J Mech Behav Biomed Mater; 2023 Feb; 138():105631. PubMed ID: 36592570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining specimen-specific finite-element models and optimization in cortical-bone material characterization improves prediction accuracy in three-point bending tests.
    Zhang G; Xu S; Yang J; Guan F; Cao L; Mao H
    J Biomech; 2018 Jul; 76():103-111. PubMed ID: 29921522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of extracting tissue material properties via cohesive elements: a finite element approach to probe insertion procedures in non-invasive spine surgeries.
    Bojairami IE; Hamedzadeh A; Driscoll M
    Med Biol Eng Comput; 2021 Oct; 59(10):2051-2061. PubMed ID: 34431026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear and nonlinear analyses of femoral fractures: Computational/experimental study.
    Mirzaei M; Alavi F; Allaveisi F; Naeini V; Amiri P
    J Biomech; 2018 Oct; 79():155-163. PubMed ID: 30135015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An open source software tool to assign the material properties of bone for ABAQUS finite element simulations.
    Pegg EC; Gill HS
    J Biomech; 2016 Sep; 49(13):3116-3121. PubMed ID: 27543250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Density-Dependent Target Stimulus for Inverse Bone (Re)modeling with Homogenized Finite Element Models.
    Bachmann S; Pahr DH; Synek A
    Ann Biomed Eng; 2023 May; 51(5):925-937. PubMed ID: 36418745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modal analysis of a composite pelvic bone: convergence and validation studies.
    Henyš P; Čapek L
    Comput Methods Biomech Biomed Engin; 2019 Jul; 22(9):916-924. PubMed ID: 30999766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.