These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24216375)

  • 1. Carbon sequestration in two created riverine wetlands in the midwestern United States.
    Bernal B; Mitsch WJ
    J Environ Qual; 2013 Jul; 42(4):1236-44. PubMed ID: 24216375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio.
    Nag SK; Liu R; Lal R
    Environ Monit Assess; 2017 Oct; 189(11):580. PubMed ID: 29063197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil development and establishment of carbon-based properties in created freshwater marshes.
    Hossler K; Bouchard V
    Ecol Appl; 2010 Mar; 20(2):539-53. PubMed ID: 20405805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon stocks, sequestration, and emissions of wetlands in south eastern Australia.
    Carnell PE; Windecker SM; Brenker M; Baldock J; Masque P; Brunt K; Macreadie PI
    Glob Chang Biol; 2018 Sep; 24(9):4173-4184. PubMed ID: 29938397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing passive rehabilitation for carbon gains in rain-filled agricultural wetlands.
    Treby S; Carnell PE; Trevathan-Tackett SM; Bonetti G; Macreadie PI
    J Environ Manage; 2020 Feb; 256():109971. PubMed ID: 31989987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.
    Means MM; Ahn C; Korol AR; Williams LD
    J Environ Manage; 2016 Jan; 165():133-139. PubMed ID: 26431640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil organic carbon stocks and sequestration rates of inland, freshwater wetlands: Sources of variability and uncertainty.
    Tangen BA; Bansal S
    Sci Total Environ; 2020 Dec; 749():141444. PubMed ID: 32827823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.
    Drake K; Halifax H; Adamowicz SC; Craft C
    Environ Manage; 2015 Oct; 56(4):998-1008. PubMed ID: 26108413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial development of surface soil conditions at two created riverine marshes.
    Anderson CJ; Mitsch WJ; Nairn RW
    J Environ Qual; 2005; 34(6):2072-81. PubMed ID: 16221827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of carbon sink effects for saline constructed wetlands vegetated with mangroves to treat mariculture wastewater and sewage.
    Yang L; Yuan CS
    Water Sci Technol; 2019 Apr; 79(8):1474-1483. PubMed ID: 31169505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States.
    Hinson AL; Feagin RA; Eriksson M; Najjar RG; Herrmann M; Bianchi TS; Kemp M; Hutchings JA; Crooks S; Boutton T
    Glob Chang Biol; 2017 Dec; 23(12):5468-5480. PubMed ID: 28815992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source and sequestration of sediment organic carbon from different elevation zones in estuarine wetland, North China.
    Du J; Zhang F; Du J; Wang Z; Ren X; Yao Z
    Sci Total Environ; 2023 Feb; 859(Pt 1):160253. PubMed ID: 36402310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland.
    McNicol G; Sturtevant CS; Knox SH; Dronova I; Baldocchi DD; Silver WL
    Glob Chang Biol; 2017 Jul; 23(7):2768-2782. PubMed ID: 27888548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China.
    Ye S; Krauss KW; Brix H; Wei M; Olsson L; Yu X; Ma X; Wang J; Yuan H; Zhao G; Ding X; Moss RF
    PLoS One; 2016; 11(8):e0160612. PubMed ID: 27501148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of river sediment on phosphorus chemistry of similarly aged natural and created wetlands in the Atchafalaya Delta, Louisiana, USA.
    Poach ME; Faulkner SP
    J Environ Qual; 2007; 36(4):1217-23. PubMed ID: 17596631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of uncertainty to improve projections of tidal wetland elevation and carbon accumulation with sea-level rise.
    Buffington KJ; Janousek CN; Dugger BD; Callaway JC; Schile-Beers LM; Borgnis Sloane E; Thorne KM
    PLoS One; 2021; 16(10):e0256707. PubMed ID: 34669722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative assessment of carbon sequestration potential of different types of wetlands in lower Gangetic basin of West Bengal, India.
    Nag SK; Das Ghosh B; Nandy S; Aftabuddin M; Sarkar UK; Das BK
    Environ Monit Assess; 2022 Nov; 195(1):154. PubMed ID: 36436176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [CO2 exchanges between mangrove- and shoal wetland ecosystems and atmosphere in Guangzhou].
    Kang WX; Zhao ZH; Tian DL; He JN; Deng XW
    Ying Yong Sheng Tai Xue Bao; 2008 Dec; 19(12):2605-10. PubMed ID: 19288711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of sedimentation on wetland carbon sequestration in an agricultural watershed.
    McCarty G; Pachepsky Y; Ritchie J
    J Environ Qual; 2009; 38(2):804-13. PubMed ID: 19244502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.