These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Zhong Y; Yu H; Zhou P; Wen Y; Zhao W; Zou W; Luo H; Wang Y; Liu L ACS Appl Mater Interfaces; 2021 Aug; 13(33):39550-39560. PubMed ID: 34378373 [TBL] [Abstract][Full Text] [Related]
3. Drop-on-Demand Pyro-Electrohydrodynamic Printing of Nematic Liquid Crystal Microlenses. Coppola S; Vespini V; Behal J; Bianco V; Miccio L; Grilli S; De Sio L; Ferraro P ACS Appl Mater Interfaces; 2024 Apr; 16(15):19453-19462. PubMed ID: 38576414 [TBL] [Abstract][Full Text] [Related]
4. Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties. Jacot-Descombes L; Cadarso VJ; Schleunitz A; Grützner S; Klein JJ; Brugger J; Schift H; Grützner G Opt Express; 2015 Sep; 23(19):25365-76. PubMed ID: 26406732 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method. Kuo SM; Lin CH Opt Express; 2010 Aug; 18(18):19114-9. PubMed ID: 20940806 [TBL] [Abstract][Full Text] [Related]
6. Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach. Grimaldi IA; Coppola S; Loffredo F; Villani F; Minarini C; Vespini V; Miccio L; Grilli S; Ferraro P Opt Lett; 2012 Jul; 37(13):2460-2. PubMed ID: 22743421 [TBL] [Abstract][Full Text] [Related]
7. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Vespini V; Coppola S; Todino M; Paturzo M; Bianco V; Grilli S; Ferraro P Lab Chip; 2016 Jan; 16(2):326-33. PubMed ID: 26660423 [TBL] [Abstract][Full Text] [Related]
8. Direct Laser Printing of Tailored Polymeric Microlenses. Florian C; Piazza S; Diaspro A; Serra P; Duocastella M ACS Appl Mater Interfaces; 2016 Jul; 8(27):17028-32. PubMed ID: 27336194 [TBL] [Abstract][Full Text] [Related]
9. Supercritical Fluid-Driven Polymer Phase Separation for Microlens with Tunable Dimension and Curvature. Yang Y; Huang X; Zhang X; Jiang F; Zhang X; Wang Y ACS Appl Mater Interfaces; 2016 Apr; 8(13):8849-58. PubMed ID: 26999714 [TBL] [Abstract][Full Text] [Related]
10. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces. Hao B; Liu H; Chen F; Yang Q; Qu P; Du G; Si J; Wang X; Hou X Opt Express; 2012 Jun; 20(12):12939-48. PubMed ID: 22714321 [TBL] [Abstract][Full Text] [Related]
11. A new method for fabricating high density and large aperture ratio liquid microlens array. Ren H; Ren D; Wu ST Opt Express; 2009 Dec; 17(26):24183-8. PubMed ID: 20052129 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of Large-Scale Microlens Arrays Based on Screen Printing for Integral Imaging 3D Display. Zhou X; Peng Y; Peng R; Zeng X; Zhang YA; Guo T ACS Appl Mater Interfaces; 2016 Sep; 8(36):24248-55. PubMed ID: 27540754 [TBL] [Abstract][Full Text] [Related]
13. Formation of micro protrusive lens arrays atop poly(methyl methacrylate). Zhao Y; Wang CC; Huang WM; Purnawali H; An L Opt Express; 2011 Dec; 19(27):26000-5. PubMed ID: 22274188 [TBL] [Abstract][Full Text] [Related]
14. Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion. Lazare S; Lopez J; Turlet JM; Kufner M; Kufner S; Chavel P Appl Opt; 1996 Aug; 35(22):4471-5. PubMed ID: 21102861 [TBL] [Abstract][Full Text] [Related]
15. Characterization of optical manipulation using microlens arrays depending on the materials and sizes in organic photovoltaics. Ko D; Gu B; Ma Y; Jo S; Hyun DC; Kim CS; Oh HJ; Kim J RSC Adv; 2021 Mar; 11(17):9766-9774. PubMed ID: 35423478 [TBL] [Abstract][Full Text] [Related]
20. Actual focal length of a symmetric biconvex microlens and its application in determining the transmitted beam waist position. Wang J; Barton JP Appl Opt; 2010 Oct; 49(30):5828-36. PubMed ID: 20962947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]