These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24216727)

  • 1. Graded-size microlens array by the pyro-electrohydrodynamic continuous printing method.
    Grimaldi IA; Coppola S; Loffredo F; Villani F; Nenna G; Minarini C; Vespini V; Miccio L; Grilli S; Ferraro P
    Appl Opt; 2013 Nov; 52(32):7699-705. PubMed ID: 24216727
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Zhong Y; Yu H; Zhou P; Wen Y; Zhao W; Zou W; Luo H; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39550-39560. PubMed ID: 34378373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop-on-Demand Pyro-Electrohydrodynamic Printing of Nematic Liquid Crystal Microlenses.
    Coppola S; Vespini V; Behal J; Bianco V; Miccio L; Grilli S; De Sio L; Ferraro P
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19453-19462. PubMed ID: 38576414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties.
    Jacot-Descombes L; Cadarso VJ; Schleunitz A; Grützner S; Klein JJ; Brugger J; Schift H; Grützner G
    Opt Express; 2015 Sep; 23(19):25365-76. PubMed ID: 26406732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method.
    Kuo SM; Lin CH
    Opt Express; 2010 Aug; 18(18):19114-9. PubMed ID: 20940806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach.
    Grimaldi IA; Coppola S; Loffredo F; Villani F; Minarini C; Vespini V; Miccio L; Grilli S; Ferraro P
    Opt Lett; 2012 Jul; 37(13):2460-2. PubMed ID: 22743421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices.
    Vespini V; Coppola S; Todino M; Paturzo M; Bianco V; Grilli S; Ferraro P
    Lab Chip; 2016 Jan; 16(2):326-33. PubMed ID: 26660423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Laser Printing of Tailored Polymeric Microlenses.
    Florian C; Piazza S; Diaspro A; Serra P; Duocastella M
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17028-32. PubMed ID: 27336194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical Fluid-Driven Polymer Phase Separation for Microlens with Tunable Dimension and Curvature.
    Yang Y; Huang X; Zhang X; Jiang F; Zhang X; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8849-58. PubMed ID: 26999714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces.
    Hao B; Liu H; Chen F; Yang Q; Qu P; Du G; Si J; Wang X; Hou X
    Opt Express; 2012 Jun; 20(12):12939-48. PubMed ID: 22714321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for fabricating high density and large aperture ratio liquid microlens array.
    Ren H; Ren D; Wu ST
    Opt Express; 2009 Dec; 17(26):24183-8. PubMed ID: 20052129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Large-Scale Microlens Arrays Based on Screen Printing for Integral Imaging 3D Display.
    Zhou X; Peng Y; Peng R; Zeng X; Zhang YA; Guo T
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24248-55. PubMed ID: 27540754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of micro protrusive lens arrays atop poly(methyl methacrylate).
    Zhao Y; Wang CC; Huang WM; Purnawali H; An L
    Opt Express; 2011 Dec; 19(27):26000-5. PubMed ID: 22274188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion.
    Lazare S; Lopez J; Turlet JM; Kufner M; Kufner S; Chavel P
    Appl Opt; 1996 Aug; 35(22):4471-5. PubMed ID: 21102861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of optical manipulation using microlens arrays depending on the materials and sizes in organic photovoltaics.
    Ko D; Gu B; Ma Y; Jo S; Hyun DC; Kim CS; Oh HJ; Kim J
    RSC Adv; 2021 Mar; 11(17):9766-9774. PubMed ID: 35423478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid optical μ-printing of polymer top-lensed microlens array.
    Ouyang X; Yin Z; Wu J; Zhou C; Zhang AP
    Opt Express; 2019 Jun; 27(13):18376-18382. PubMed ID: 31252782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser direct-write technique for fabricating microlens arrays on soda-lime glass with a Nd:YVO4 laser.
    Nieto D; Flores-Arias MT; O'Connor GM; Gomez-Reino C
    Appl Opt; 2010 Sep; 49(26):4979-83. PubMed ID: 20830187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-effect of oligomeric cholesteric liquid-crystal microlenses on the optical specifications.
    Bayon C; Agez G; Mitov M
    Opt Lett; 2015 Oct; 40(20):4763-6. PubMed ID: 26469614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralong focal length microlens array fabricated based on SU-8 photoresist.
    Bian R; Xiong Y; Chen X; Xiong P; Hou S; Chen S; Zhang X; Liu G; Tian Y
    Appl Opt; 2015 Jun; 54(16):5088-93. PubMed ID: 26192669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actual focal length of a symmetric biconvex microlens and its application in determining the transmitted beam waist position.
    Wang J; Barton JP
    Appl Opt; 2010 Oct; 49(30):5828-36. PubMed ID: 20962947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.