These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24216824)

  • 1. Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: is bulk material a better choice for gain media?
    Vallini F; Gu Q; Kats M; Fainman Y; Frateschi NC
    Opt Express; 2013 Nov; 21(22):25985-98. PubMed ID: 24216824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thresholdless quantum dot nanolaser.
    Ota Y; Kakuda M; Watanabe K; Iwamoto S; Arakawa Y
    Opt Express; 2017 Aug; 25(17):19981-19994. PubMed ID: 29041684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-resonance nanolaser based on coupled slit-hole resonator structures.
    Zhu ZH; Liu H; Wang SM; Ye WM; Yuan XD; Zhu SN
    Opt Lett; 2010 Mar; 35(5):754-6. PubMed ID: 20195342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiboding and bonding lasing modes with low gain threshold in nonlocal metallic nanoshell.
    Huang Y; Xiao JJ; Gao L
    Opt Express; 2015 Apr; 23(7):8818-28. PubMed ID: 25968719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective Mie Resonances for Directional On-Chip Nanolasers.
    Hoang TX; Ha ST; Pan Z; Phua WK; Paniagua-Domínguez R; Png CE; Chu HS; Kuznetsov AI
    Nano Lett; 2020 Aug; 20(8):5655-5661. PubMed ID: 32603127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity.
    Liu J; Ates S; Lorke M; Mørk J; Lodahl P; Stobbe S
    Opt Express; 2013 Nov; 21(23):28507-12. PubMed ID: 24514362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayer semiconductor nanocavity lasers with ultralow thresholds.
    Wu S; Buckley S; Schaibley JR; Feng L; Yan J; Mandrus DG; Hatami F; Yao W; Vučković J; Majumdar A; Xu X
    Nature; 2015 Apr; 520(7545):69-72. PubMed ID: 25778703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.
    Woolf A; Puchtler T; Aharonovich I; Zhu T; Niu N; Wang D; Oliver R; Hu EL
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14042-6. PubMed ID: 25197073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A room temperature continuous-wave nanolaser using colloidal quantum wells.
    Yang Z; Pelton M; Fedin I; Talapin DV; Waks E
    Nat Commun; 2017 Jul; 8(1):143. PubMed ID: 28747633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers.
    Qian F; Li Y; Gradecak S; Park HG; Dong Y; Ding Y; Wang ZL; Lieber CM
    Nat Mater; 2008 Sep; 7(9):701-6. PubMed ID: 18711385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Threshold Nanolaser Based on Hybrid Plasmonic Waveguide Mode Supported by Metallic Grating Waveguide Structure.
    Zhang X; Yan M; Ning T; Zhao L; Jiang S; Huo Y
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-Ultraviolet Hyperbolic Metacavity Laser.
    Shen KC; Ku CT; Hsieh C; Kuo HC; Cheng YJ; Tsai DP
    Adv Mater; 2018 May; 30(21):e1706918. PubMed ID: 29633385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum.
    Huang J; Kim SH; Scherer A
    Opt Express; 2010 Sep; 18(19):19581-91. PubMed ID: 20940854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strongly confined, low-threshold laser modes in organic semiconductor microgoblets.
    Grossmann T; Klinkhammer S; Hauser M; Floess D; Beck T; Vannahme C; Mappes T; Lemmer U; Kalt H
    Opt Express; 2011 May; 19(10):10009-16. PubMed ID: 21643259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic nanolaser using epitaxially grown silver film.
    Lu YJ; Kim J; Chen HY; Wu C; Dabidian N; Sanders CE; Wang CY; Lu MY; Li BH; Qiu X; Chang WH; Chen LJ; Shvets G; Shih CK; Gwo S
    Science; 2012 Jul; 337(6093):450-3. PubMed ID: 22837524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells.
    Pizzi G; Virgilio M; Grosso G
    Nanotechnology; 2010 Feb; 21(5):055202. PubMed ID: 20023310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Coulomb screening on lateral lasing in VECSELs.
    Wang C; Malloy K; Sheik-Bahae M
    Opt Express; 2015 Dec; 23(25):32548-54. PubMed ID: 26699044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic study of thresholdless oscillation in high-β buried multiple-quantum-well photonic crystal nanocavity lasers.
    Takiguchi M; Taniyama H; Sumikura H; Birowosuto MD; Kuramochi E; Shinya A; Sato T; Takeda K; Matsuo S; Notomi M
    Opt Express; 2016 Feb; 24(4):3441-50. PubMed ID: 26907003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous-wave Raman silicon laser.
    Rong H; Jones R; Liu A; Cohen O; Hak D; Fang A; Paniccia M
    Nature; 2005 Feb; 433(7027):725-8. PubMed ID: 15716948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimode emission and optical power in a semiconductor quantum dot laser.
    Jiang L; Asryan LV
    Nanotechnology; 2008 Oct; 19(41):415204. PubMed ID: 21832641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.