These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24216824)

  • 21. Dynamical Tuning of Nanowire Lasing Spectra.
    Zapf M; Röder R; Winkler K; Kaden L; Greil J; Wille M; Grundmann M; Schmidt-Grund R; Lugstein A; Ronning C
    Nano Lett; 2017 Nov; 17(11):6637-6643. PubMed ID: 28960998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental demonstration of mode selection in bridge-coupled metallo-dielectric nanolasers.
    Jiang S; Belogolovskii D; Deka SS; Pan SH; Fainman Y
    Opt Lett; 2021 Dec; 46(24):6027-6030. PubMed ID: 34913910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-infrared hybrid plasmonic multiple quantum well nanowire lasers.
    Wang J; Wei W; Yan X; Zhang J; Zhang X; Ren X
    Opt Express; 2017 Apr; 25(8):9358-9367. PubMed ID: 28437898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes.
    Mylnikov V; Ha ST; Pan Z; Valuckas V; Paniagua-Domínguez R; Demir HV; Kuznetsov AI
    ACS Nano; 2020 Jun; 14(6):7338-7346. PubMed ID: 32459463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved performance of GaN-based blue laser diodes using asymmetric multiple quantum wells without the first quantum barrier layer.
    Liang F; Zhao D; Liu Z; Chen P; Yang J
    Opt Express; 2022 Mar; 30(6):9913-9923. PubMed ID: 35299404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser.
    Nozaki K; Kita S; Baba T
    Opt Express; 2007 Jun; 15(12):7506-14. PubMed ID: 19547074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers.
    Alanis JA; Saxena D; Mokkapati S; Jiang N; Peng K; Tang X; Fu L; Tan HH; Jagadish C; Parkinson P
    Nano Lett; 2017 Aug; 17(8):4860-4865. PubMed ID: 28732157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A room temperature low-threshold ultraviolet plasmonic nanolaser.
    Zhang Q; Li G; Liu X; Qian F; Li Y; Sum TC; Lieber CM; Xiong Q
    Nat Commun; 2014 Sep; 5():4953. PubMed ID: 25247634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers.
    Lee JH; Khajavikhan M; Simic A; Gu Q; Bondarenko O; Slutsky B; Nezhad MP; Fainman Y
    Opt Express; 2011 Oct; 19(22):21524-31. PubMed ID: 22109001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells.
    Guzelturk B; Kelestemur Y; Olutas M; Li Q; Lian T; Demir HV
    J Phys Chem Lett; 2017 Nov; 8(21):5317-5324. PubMed ID: 29022715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lasing action in low-resistance nanolasers based on tunnel junctions.
    Fang CY; Pan SH; Vallini F; Tukiainen A; Lyytikäinen J; Nylund G; Kanté B; Guina M; El Amili A; Fainman Y
    Opt Lett; 2019 Aug; 44(15):3669-3672. PubMed ID: 31368939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrically induced two-photon transparency in semiconductor quantum wells.
    Hayat A; Nevet A; Orenstein M
    Phys Rev Lett; 2009 May; 102(18):183002. PubMed ID: 19518867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical gain and lasing from bulk cadmium sulfide nanocrystals through bandgap renormalization.
    Tanghe I; Samoli M; Wagner I; Cayan SA; Khan AH; Chen K; Hodgkiss J; Moreels I; Thourhout DV; Hens Z; Geiregat P
    Nat Nanotechnol; 2023 Dec; 18(12):1423-1429. PubMed ID: 37798564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals.
    Yang A; Li Z; Knudson MP; Hryn AJ; Wang W; Aydin K; Odom TW
    ACS Nano; 2015 Dec; 9(12):11582-8. PubMed ID: 26456299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimal-gain-printed silicon nanolaser.
    Park BJ; Kim MW; Park KT; Kim HM; You BU; Yu A; Kim JT; No YS; Kim MK
    Sci Adv; 2024 Sep; 10(38):eadl1548. PubMed ID: 39292779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The precise assignment of whispering gallery modes for lasing spectra emitting from cylindrical micro-cavities].
    Wang DL; Jiang N; Jiang LQ; Zhang ZL; Pu XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2749-53. PubMed ID: 19248475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell.
    Natarov DM; Benson TM; Nosich AI
    Beilstein J Nanotechnol; 2019; 10():294-304. PubMed ID: 30800568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lasing Action from Anapole Metasurfaces.
    Tripathi A; Kim HR; Tonkaev P; Lee SJ; Makarov SV; Kruk SS; Rybin MV; Park HG; Kivshar Y
    Nano Lett; 2021 Aug; 21(15):6563-6568. PubMed ID: 34282919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thresholdless nanoscale coaxial lasers.
    Khajavikhan M; Simic A; Katz M; Lee JH; Slutsky B; Mizrahi A; Lomakin V; Fainman Y
    Nature; 2012 Feb; 482(7384):204-7. PubMed ID: 22318604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Performance Plasmonic Nanolasers with External Quantum Efficiency Exceeding 10.
    Wang S; Chen HZ; Ma RM
    Nano Lett; 2018 Dec; 18(12):7942-7948. PubMed ID: 30422664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.