BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 24216840)

  • 1. Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks.
    Brunstein M; Wicker K; Hérault K; Heintzmann R; Oheim M
    Opt Express; 2013 Nov; 21(22):26162-73. PubMed ID: 24216840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The wide-field optical sectioning of microlens array and structured illumination-based plane-projection multiphoton microscopy.
    Yu JY; Holland DB; Blake GA; Guo CL
    Opt Express; 2013 Jan; 21(2):2097-109. PubMed ID: 23389190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of contrast transfer function in super-resolution microscopy using two-color fluorescence dip spectroscopy.
    Iketaki Y; Watanabe T; Bokor N; Omatsu T; Hiraga T; Yamamoto K; Fujii M
    Appl Spectrosc; 2007 Jan; 61(1):6-10. PubMed ID: 17311707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy.
    Winter PW; Chandris P; Fischer RS; Wu Y; Waterman CM; Shroff H
    Opt Express; 2015 Feb; 23(4):5327-34. PubMed ID: 25836564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-color dynamic tracking of GM-CSF receptors/JAK2 kinases signaling activation using temporal focusing multiphoton fluorescence excitation and astigmatic imaging.
    Chien FC; Lien CH; Dai YH
    Opt Express; 2015 Nov; 23(24):30943-55. PubMed ID: 26698726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing.
    Vaziri A; Shank CV
    Opt Express; 2010 Sep; 18(19):19645-55. PubMed ID: 20940859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase optimisation for structured illumination microscopy.
    Wicker K; Mandula O; Best G; Fiolka R; Heintzmann R
    Opt Express; 2013 Jan; 21(2):2032-49. PubMed ID: 23389185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-point separation in far-field super-resolution fluorescence microscopy based on two-color fluorescence dip spectroscopy, Part I: Experimental evaluation.
    Watanabe T; Iketaki Y; Omatsu T; Yamamoto K; Fujii M
    Appl Spectrosc; 2005 Jul; 59(7):868-72. PubMed ID: 16053556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS).
    Krieger JW; Singh AP; Garbe CS; Wohland T; Langowski J
    Opt Express; 2014 Feb; 22(3):2358-75. PubMed ID: 24663528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.
    Tjalkens RB; Zoran MJ; Mohl B; Barhoumi R
    Brain Res; 2006 Oct; 1113(1):210-9. PubMed ID: 16934782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full color natural light holographic camera.
    Kim MK
    Opt Express; 2013 Apr; 21(8):9636-42. PubMed ID: 23609673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast dual-excitation ratiometry with light-emitting diodes and high-speed liquid crystal shutters.
    Fukano T; Shimozono S; Miyawaki A
    Biochem Biophys Res Commun; 2006 Feb; 340(1):250-5. PubMed ID: 16360639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon spectral imaging with high temporal and spectral resolution.
    Im KB; Kang MS; Kim J; Bestvater F; Seghiri Z; Wachsmuth M; Grailhe R
    Opt Express; 2010 Dec; 18(26):26905-14. PubMed ID: 21196967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope.
    Slabý T; Kolman P; Dostál Z; Antoš M; Lošťák M; Chmelík R
    Opt Express; 2013 Jun; 21(12):14747-62. PubMed ID: 23787662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential interferometric particle tracking on the subnanometer- and submillisecond-scale.
    Müller D; Klopfenstein DR; Ulbrich RG
    Opt Express; 2013 Mar; 21(6):7362-72. PubMed ID: 23546120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rigid and high-numerical-aperture two-photon fluorescence endoscope.
    Le Harzic R; Riemann I; Weinigel M; König K; Messerschmidt B
    Appl Opt; 2009 Jun; 48(18):3396-400. PubMed ID: 19543347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LED-based interferometric reflectance imaging sensor for quantitative dynamic monitoring of biomolecular interactions.
    Daaboul GG; Vedula RS; Ahn S; Lopez CA; Reddington A; Ozkumur E; Ünlü MS
    Biosens Bioelectron; 2011 Jan; 26(5):2221-7. PubMed ID: 20980139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended depth of field microscopy for rapid volumetric two-photon imaging.
    Thériault G; De Koninck Y; McCarthy N
    Opt Express; 2013 Apr; 21(8):10095-104. PubMed ID: 23609714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.