These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 24216843)
1. Real-time white-light phosphor-LED visible light communication (VLC) with compact size. Yeh CH; Liu YL; Chow CW Opt Express; 2013 Nov; 21(22):26192-7. PubMed ID: 24216843 [TBL] [Abstract][Full Text] [Related]
2. Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance. Yeh CH; Chow CW; Chen HY; Chen J; Liu YL Opt Express; 2014 Apr; 22(8):9783-8. PubMed ID: 24787863 [TBL] [Abstract][Full Text] [Related]
3. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application. Li H; Chen X; Guo J; Chen H Opt Express; 2014 Nov; 22(22):27203-13. PubMed ID: 25401871 [TBL] [Abstract][Full Text] [Related]
4. Transmitter for 1.9 Gbps phosphor white light visible light communication without a blue filter based on OOK-NRZ modulation. Wang Y; Chen X; Xu Y Opt Express; 2023 Feb; 31(5):7933-7946. PubMed ID: 36859914 [TBL] [Abstract][Full Text] [Related]
5. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC. Yeh CH; Chen HY; Chow CW; Liu YL Opt Express; 2015 Jan; 23(2):1133-8. PubMed ID: 25835873 [TBL] [Abstract][Full Text] [Related]
6. 2.805 Gbit/s high-bandwidth phosphor white light visible light communication utilizing an InGaN/GaN semipolar blue micro-LED. Chang YH; Huang YM; Liou FJ; Chow CW; Liu Y; Kuo HC; Yeh CH; Gunawan WH; Hung TY; Jian YH Opt Express; 2022 May; 30(10):16938-16946. PubMed ID: 36221527 [TBL] [Abstract][Full Text] [Related]
7. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Huang X; Wang Z; Shi J; Wang Y; Chi N Opt Express; 2015 Aug; 23(17):22034-42. PubMed ID: 26368178 [TBL] [Abstract][Full Text] [Related]
8. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Wang Y; Wang Y; Chi N; Yu J; Shang H Opt Express; 2013 Jan; 21(1):1203-8. PubMed ID: 23389012 [TBL] [Abstract][Full Text] [Related]
9. High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. Mei S; Liu X; Zhang W; Liu R; Zheng L; Guo R; Tian P ACS Appl Mater Interfaces; 2018 Feb; 10(6):5641-5648. PubMed ID: 29345894 [TBL] [Abstract][Full Text] [Related]
10. Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications? Sung JY; Chow CW; Yeh CH Opt Express; 2014 Aug; 22(17):20646-51. PubMed ID: 25321269 [TBL] [Abstract][Full Text] [Related]
11. 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. Retamal JR; Oubei HM; Janjua B; Chi YC; Wang HY; Tsai CT; Ng TK; Hsieh DH; Kuo HC; Alouini MS; He JH; Lin GR; Ooi BS Opt Express; 2015 Dec; 23(26):33656-66. PubMed ID: 26832029 [TBL] [Abstract][Full Text] [Related]
12. Achievable information rate enhancement of visible light communication using probabilistically shaped OFDM modulation. Xie C; Chen Z; Fu S; Liu W; He Z; Deng L; Tang M; Liu D Opt Express; 2018 Jan; 26(1):367-375. PubMed ID: 29328313 [TBL] [Abstract][Full Text] [Related]
13. Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication. Mao Y; Jin X; Pan W; Liu W; Jin M; Gong C; Xu Z Opt Express; 2019 Apr; 27(7):9382-9393. PubMed ID: 31045090 [TBL] [Abstract][Full Text] [Related]
14. Bandwidth enhancement with DAC-enabled pre-equalization and real-valued precoding for a FBMC-VLC. Chen M; Cai Y; Zhou J; Zhou H; Liu Y; Chen Q Opt Lett; 2022 Sep; 47(18):4826-4829. PubMed ID: 36107100 [TBL] [Abstract][Full Text] [Related]
15. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Wang Y; Huang X; Tao L; Shi J; Chi N Opt Express; 2015 May; 23(10):13626-33. PubMed ID: 26074612 [TBL] [Abstract][Full Text] [Related]
16. Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. Liu YF; Yeh CH; Chow CW; Liu Y; Liu YL; Tsang HK Opt Express; 2012 Oct; 20(21):23019-24. PubMed ID: 23188265 [TBL] [Abstract][Full Text] [Related]
17. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters. Rodríguez J; Lamar DG; Aller DG; Miaja PF; Sebastián J Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642455 [TBL] [Abstract][Full Text] [Related]
18. Comparison of nonlinear equalizers for high-speed visible light communication utilizing silicon substrate phosphorescent white LED. Zhou Y; Wei Y; Hu F; Hu J; Zhao Y; Zhang J; Jiang F; Chi N Opt Express; 2020 Jan; 28(2):2302-2316. PubMed ID: 32121923 [TBL] [Abstract][Full Text] [Related]
19. White-Light GaN-μLEDs Employing Green/Red Perovskite Quantum Dots as Color Converters for Visible Light Communication. Liu X; Tao L; Mei S; Cui Z; Shen D; Sheng Z; Yu J; Ye P; Zhi T; Tao T; Wang L; Guo R; Tian P Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214955 [TBL] [Abstract][Full Text] [Related]
20. Improved Target Signal Source Tracking and Extraction Method Based on Outdoor Visible Light Communication Using a Cam-Shift Algorithm and Kalman Filter. Huang M; Guan W; Fan Z; Chen Z; Li J; Chen B Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30487408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]