These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24216877)

  • 1. Athermal silicon microring resonators with titanium oxide cladding.
    Guha B; Cardenas J; Lipson M
    Opt Express; 2013 Nov; 21(22):26557-63. PubMed ID: 24216877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CMOS-compatible athermal silicon microring resonators.
    Guha B; Kyotoku BB; Lipson M
    Opt Express; 2010 Feb; 18(4):3487-93. PubMed ID: 20389358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Athermal silicon ring resonators clad with titanium dioxide for 1.3µm wavelength operation.
    Feng S; Shang K; Bovington JT; Wu R; Guan B; Cheng KT; Bowers JE; Yoo SJ
    Opt Express; 2015 Oct; 23(20):25653-60. PubMed ID: 26480081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide.
    Djordjevic SS; Shang K; Guan B; Cheung ST; Liao L; Basak J; Liu HF; Yoo SJ
    Opt Express; 2013 Jun; 21(12):13958-68. PubMed ID: 23787585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Athermal lithium niobate microresonator.
    Ling J; He Y; Luo R; Li M; Liang H; Lin Q
    Opt Express; 2020 Jul; 28(15):21682-21691. PubMed ID: 32752441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal stress implications in athermal TiO2 waveguides on a silicon substrate.
    Bovington J; Wu R; Cheng KT; Bowers JE
    Opt Express; 2014 Jan; 22(1):661-6. PubMed ID: 24515025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Athermal and wavelength-trimmable photonic filters based on TiO₂-cladded amorphous-SOI.
    Lipka T; Moldenhauer L; Müller J; Trieu HK
    Opt Express; 2015 Jul; 23(15):20075-88. PubMed ID: 26367665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon nitride/titanium oxide hybrid waveguide design enabling broadband athermal operation.
    Ma J; Sun Y; Chen S
    Appl Opt; 2019 Jul; 58(19):5267-5272. PubMed ID: 31503624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators.
    Fegadolli WS; Almeida VR; Oliveira JE
    Opt Express; 2011 Jun; 19(13):12727-39. PubMed ID: 21716515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of polymer-dielectric bi-layers for athermal silicon photonics.
    Raghunathan V; Izuhara T; Michel J; Kimerling L
    Opt Express; 2012 Jul; 20(14):16059-66. PubMed ID: 22772296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling thermo-optic response in microresonators using bimaterial cantilevers.
    Guha B; Lipson M
    Opt Lett; 2015 Jan; 40(1):103-6. PubMed ID: 25531620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Athermal performance in high-Q polymer-clad silicon microdisk resonators.
    Alipour P; Hosseini ES; Eftekhar AA; Momeni B; Adibi A
    Opt Lett; 2010 Oct; 35(20):3462-4. PubMed ID: 20967100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2013 May; 21(10):12699-712. PubMed ID: 23736489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Athermal silicon microring electro-optic modulator.
    Guha B; Preston K; Lipson M
    Opt Lett; 2012 Jun; 37(12):2253-5. PubMed ID: 22739872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Athermal silicon nitride ring resonator by photobleaching of Disperse Red 1-doped poly(methyl methacrylate) polymer.
    Qiu F; Yu F; Spring AM; Yokoyama S
    Opt Lett; 2012 Oct; 37(19):4086-8. PubMed ID: 23027287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material.
    Namnabat S; Kim KJ; Jones A; Himmelhuber R; DeRose CT; Trotter DC; Starbuck AL; Pomerene A; Lentine AL; Norwood RA
    Opt Express; 2017 Sep; 25(18):21471-21482. PubMed ID: 29041445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS compatible reconfigurable filter for high bandwidth non-blocking operation.
    Lira HL; Poitras CB; Lipson M
    Opt Express; 2011 Oct; 19(21):20115-21. PubMed ID: 21997022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators.
    Zhang L; Ji R; Jia L; Yang L; Zhou P; Tian Y; Chen P; Lu Y; Jiang Z; Liu Y; Fang Q; Yu M
    Opt Lett; 2010 May; 35(10):1620-2. PubMed ID: 20479828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances.
    Arbabi A; Goddard LL
    Opt Lett; 2013 Oct; 38(19):3878-81. PubMed ID: 24081076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power insensitive silicon microring resonators.
    Luo LW; Wiederhecker GS; Preston K; Lipson M
    Opt Lett; 2012 Feb; 37(4):590-2. PubMed ID: 22344116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.