These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24216900)

  • 1. Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature.
    Karni O; Capua A; Eisenstein G; Sichkovskyi V; Ivanov V; Reithmaier JP
    Opt Express; 2013 Nov; 21(22):26786-96. PubMed ID: 24216900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent control in quantum dot gain media using shaped pulses: a numerical study.
    Mishra AK; Karni O; Eisenstein G
    Opt Express; 2015 Nov; 23(23):29940-53. PubMed ID: 26698476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent control in a semiconductor optical amplifier operating at room temperature.
    Capua A; Karni O; Eisenstein G; Sichkovskyi V; Ivanov V; Reithmaier JP
    Nat Commun; 2014 Sep; 5():5025. PubMed ID: 25242121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex characterization of short-pulse propagation through InAs/InP quantum-dash optical amplifiers: from the quasi-linear to the two-photon-dominated regime.
    Capua A; Saal A; Karni O; Eisenstein G; Reithmaier JP; Yvind K
    Opt Express; 2012 Jan; 20(1):347-53. PubMed ID: 22274358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation-induced dephasing in a resonantly driven InAs/GaAs quantum dot.
    Monniello L; Tonin C; Hostein R; Lemaitre A; Martinez A; Voliotis V; Grousson R
    Phys Rev Lett; 2013 Jul; 111(2):026403. PubMed ID: 23889424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical characterization of InP-based quantum dot semiconductor optical amplifier.
    Nawwar OM; Emara A; Aly MH; Okaz AM
    Appl Opt; 2016 Dec; 55(35):9978-9985. PubMed ID: 27958400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase evolution of solitonlike optical pulses during excitonic Rabi flopping in a semiconductor.
    Nielsen NC; Höner zu Siederdissen T; Kuhl J; Schaarschmidt M; Förstner J; Knorr A; Giessen H
    Phys Rev Lett; 2005 Feb; 94(5):057406. PubMed ID: 15783697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tapered InAs/InGaAs quantum dot semiconductor optical amplifier design for enhanced gain and beam quality.
    Mesaritakis C; Kapsalis A; Simos H; Simos C; Krakowski M; Krestnikov I; Syvridis D
    Opt Lett; 2013 Jul; 38(14):2404-6. PubMed ID: 23939062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An all-optical quantum gate in a semiconductor quantum dot.
    Li X; Wu Y; Steel D; Gammon D; Stievater TH; Katzer DS; Park D; Piermarocchi C; Sham LJ
    Science; 2003 Aug; 301(5634):809-11. PubMed ID: 12907794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
    Press D; Ladd TD; Zhang B; Yamamoto Y
    Nature; 2008 Nov; 456(7219):218-21. PubMed ID: 19005550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures.
    Eyal O; Willinger A; Banyoudeh S; Schanbel F; Sichkovskyi V; Mikhelashvili V; Reithmaier JP; Eisenstein G
    Opt Express; 2017 Oct; 25(22):27262-27269. PubMed ID: 29092203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems.
    Sadeghi SM
    Nanotechnology; 2009 Jun; 20(22):225401. PubMed ID: 19436085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 microm.
    Zilkie AJ; Meier J; Smith PW; Mojahedi M; Aitchison JS; Poole PJ; Allen CN; Barrios P; Poitras D
    Opt Express; 2006 Nov; 14(23):11453-9. PubMed ID: 19529563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm.
    Jiao Y; Tilma BW; Kotani J; Nötzel R; Smit MK; He S; Bente EA
    Opt Express; 2012 Feb; 20(4):3675-92. PubMed ID: 22418126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers.
    Kim J; Delfyett PJ
    Opt Express; 2009 Dec; 17(25):22566-70. PubMed ID: 20052181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable delay of ultrashort pulses in a quantum dot optical amplifier.
    van der Poel M; Mørk J; Hvam J
    Opt Express; 2005 Oct; 13(20):8032-7. PubMed ID: 19498833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of electromagnetically induced transparency in a quantum dot structure.
    Nielsen PK; Thyrrestrup H; Mørk J; Tromborg B
    Opt Express; 2007 May; 15(10):6396-408. PubMed ID: 19546945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonmonotonic field dependence of damping and reappearance of Rabi oscillations in quantum dots.
    Vagov A; Croitoru MD; Axt VM; Kuhn T; Peeters FM
    Phys Rev Lett; 2007 Jun; 98(22):227403. PubMed ID: 17677878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses.
    Simon CM; Belhadj T; Chatel B; Amand T; Renucci P; Lemaitre A; Krebs O; Dalgarno PA; Warburton RJ; Marie X; Urbaszek B
    Phys Rev Lett; 2011 Apr; 106(16):166801. PubMed ID: 21599394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoherence of rabi oscillations in a single quantum dot.
    Villas-Bôas JM; Ulloa SE; Govorov AO
    Phys Rev Lett; 2005 Feb; 94(5):057404. PubMed ID: 15783695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.