These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

741 related articles for article (PubMed ID: 24216923)

  • 41. Metal Electrodes for Filtering the Localized Fundamental Mode of a Ridge Optical Waveguide on a Thin Lithium Niobate Nanofilm.
    Parfenov M; Agruzov P; Tronev A; Ilichev I; Usikova A; Zadiranov Y; Shamrai A
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887906
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition.
    Briggs RM; Pryce IM; Atwater HA
    Opt Express; 2010 May; 18(11):11192-201. PubMed ID: 20588978
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GaN microring waveguide resonators bonded to silicon substrate by a two-step polymer process.
    Hashida R; Sasaki T; Hane K
    Appl Opt; 2018 Mar; 57(9):2073-2079. PubMed ID: 29603996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrated-optic biosensor by electro-optically modulated surface plasmon resonance.
    Wang TJ; Lin WS; Liu FK
    Biosens Bioelectron; 2007 Feb; 22(7):1441-6. PubMed ID: 16876989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hybrid 3C-silicon carbide-lithium niobate integrated photonic platform.
    Krishna R; Fan T; Hosseinnia AH; Wu X; Peng Z; Adibi A
    Opt Express; 2024 Apr; 32(8):14555-14564. PubMed ID: 38859397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Miniature microring resonator sensor based on a hybrid plasmonic waveguide.
    Zhou L; Sun X; Li X; Chen J
    Sensors (Basel); 2011; 11(7):6856-67. PubMed ID: 22163989
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly linear lithium niobate Michelson interferometer modulators assisted by spiral Bragg grating reflectors.
    Ghoname AO; Hassanien AE; Chow E; Goddard LL; Gong S
    Opt Express; 2022 Oct; 30(22):40666-40681. PubMed ID: 36298997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator.
    Boynton N; Cai H; Gehl M; Arterburn S; Dallo C; Pomerene A; Starbuck A; Hood D; Trotter DC; Friedmann T; DeRose CT; Lentine A
    Opt Express; 2020 Jan; 28(2):1868-1884. PubMed ID: 32121890
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hybrid integrated thin-film lithium niobate-silicon nitride electro-optical phased array incorporating silicon nitride grating antenna for two-dimensional beam steering.
    Lee WB; Kwon YJ; Kim DH; Sunwoo YH; Lee SS
    Opt Express; 2024 Mar; 32(6):9171-9183. PubMed ID: 38571156
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrated O- and C-band silicon-lithium niobate Mach-Zehnder modulators with 100 GHz bandwidth, low voltage, and low loss.
    Valdez F; Mere V; Wang X; Mookherjea S
    Opt Express; 2023 Feb; 31(4):5273-5289. PubMed ID: 36823812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vertical mode transition in hybrid lithium niobate and silicon nitride-based photonic integrated circuit structures.
    Ahmed ANR; Mercante A; Shi S; Yao P; Prather DW
    Opt Lett; 2018 Sep; 43(17):4140-4143. PubMed ID: 30160736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrahigh-Q lithium niobate microring resonator with multimode waveguide.
    Wei C; Li J; Jia Q; Li D; Liu J
    Opt Lett; 2023 May; 48(9):2465-2467. PubMed ID: 37126299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tailoring the dispersion behavior of optical nanowires with intercore-cladding lithium niobate thin film.
    He H; Miao L; Jiang G; Zhao C; Wen S
    Opt Express; 2015 Oct; 23(21):27085-93. PubMed ID: 26480369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators.
    Dong P; Qian W; Liang H; Shafiiha R; Feng NN; Feng D; Zheng X; Krishnamoorthy AV; Asghari M
    Opt Express; 2010 May; 18(10):9852-8. PubMed ID: 20588834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Radially realigning nematic liquid crystal for efficient tuning of microring resonators.
    Wang TJ; Li WJ; Chen TJ
    Opt Express; 2013 Nov; 21(23):28974-9. PubMed ID: 24514412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate.
    Celik OT; Sarabalis CJ; Mayor FM; Stokowski HS; Herrmann JF; McKenna TP; Lee NRA; Jiang W; Multani KKS; Safavi-Naeini AH
    Opt Express; 2022 Jun; 30(13):23177-23186. PubMed ID: 36225003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Device architectures for low voltage and ultrafast graphene integrated phase modulators.
    Mao D; Cheng C; Wang F; Xiao Y; Li T; Chang L; Soman A; Kananen T; Zhang X; Krainak M; Dong P; Gu T
    IEEE J Sel Top Quantum Electron; 2021; 27(2):1-9. PubMed ID: 33154613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. All-optical logic operation of polarized light signals in highly nonlinear silicon hybrid plasmonic microring resonators.
    Dai J; Zhang M; Zhou F; Wang Y; Lu L; Liu D
    Appl Opt; 2015 May; 54(14):4471-7. PubMed ID: 25967504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications.
    Cai L; Mahmoud A; Piazza G
    Opt Express; 2019 Apr; 27(7):9794-9802. PubMed ID: 31045128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Voltage-induced waveguides in lithium niobate films on silicon substrates.
    Chauvet M; Thoa P; Bassignot F
    Opt Lett; 2017 Mar; 42(6):1019-1022. PubMed ID: 28295081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.