These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

619 related articles for article (PubMed ID: 24217315)

  • 21. Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression.
    Lioliou E; Sharma CM; Caldelari I; Helfer AC; Fechter P; Vandenesch F; Vogel J; Romby P
    PLoS Genet; 2012 Jun; 8(6):e1002782. PubMed ID: 22761586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene isoform specificity through enhancer-associated antisense transcription.
    Onodera CS; Underwood JG; Katzman S; Jacobs F; Greenberg D; Salama SR; Haussler D
    PLoS One; 2012; 7(8):e43511. PubMed ID: 22937057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of gene expression by natural antisense RNA transcripts.
    Knee R; Murphy PR
    Neurochem Int; 1997 Sep; 31(3):379-92. PubMed ID: 9246680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-transcriptional inducible gene regulation by natural antisense RNA.
    Nishizawa M; Ikeya Y; Okumura T; Kimura T
    Front Biosci (Landmark Ed); 2015 Jan; 20(1):1-36. PubMed ID: 25553439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convergent transcription in the butyrolactone regulon in Streptomyces coelicolor confers a bistable genetic switch for antibiotic biosynthesis.
    Chatterjee A; Drews L; Mehra S; Takano E; Kaznessis YN; Hu WS
    PLoS One; 2011; 6(7):e21974. PubMed ID: 21765930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sense-antisense miRNA pairs constitute an elaborate reciprocal regulatory circuit.
    Song Y; Li L; Yang W; Fu Q; Chen W; Fang Z; Li W; Gu N; Zhang R
    Genome Res; 2020 May; 30(5):661-672. PubMed ID: 32424073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA exosome depletion reveals transcription upstream of active human promoters.
    Preker P; Nielsen J; Kammler S; Lykke-Andersen S; Christensen MS; Mapendano CK; Schierup MH; Jensen TH
    Science; 2008 Dec; 322(5909):1851-4. PubMed ID: 19056938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression.
    Donaldson ME; Ostrowski LA; Goulet KM; Saville BJ
    BMC Genomics; 2017 May; 18(1):340. PubMed ID: 28464849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Making sense of Dlx1 antisense RNA.
    Kraus P; Sivakamasundari V; Lim SL; Xing X; Lipovich L; Lufkin T
    Dev Biol; 2013 Apr; 376(2):224-35. PubMed ID: 23415800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast.
    Mostovoy Y; Thiemicke A; Hsu TY; Brem RB
    Genome Biol Evol; 2016 Jun; 8(6):1748-61. PubMed ID: 27190003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pervasive transcription: detecting functional RNAs in bacteria.
    Lybecker M; Bilusic I; Raghavan R
    Transcription; 2014; 5(4):e944039. PubMed ID: 25483405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antisense transcript and RNA processing alterations suppress instability of polyadenylated mRNA in chlamydomonas chloroplasts.
    Nishimura Y; Kikis EA; Zimmer SL; Komine Y; Stern DB
    Plant Cell; 2004 Nov; 16(11):2849-69. PubMed ID: 15486097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antisense expression increases gene expression variability and locus interdependency.
    Xu Z; Wei W; Gagneur J; Clauder-Münster S; Smolik M; Huber W; Steinmetz LM
    Mol Syst Biol; 2011 Feb; 7():468. PubMed ID: 21326235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of Gene Expression in Senescence through Transcriptional Read-Through of Convergent Protein-Coding Genes.
    Muniz L; Deb MK; Aguirrebengoa M; Lazorthes S; Trouche D; Nicolas E
    Cell Rep; 2017 Nov; 21(9):2433-2446. PubMed ID: 29186682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Versatile RNA-sensing transcriptional regulators for engineering genetic networks.
    Lucks JB; Qi L; Mutalik VK; Wang D; Arkin AP
    Proc Natl Acad Sci U S A; 2011 May; 108(21):8617-22. PubMed ID: 21555549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pseudogenes: A Novel Source of Trans-Acting Antisense RNAs.
    Lister NC; Johnsson P; Waters PD; Morris KV
    Methods Mol Biol; 2021; 2324():219-236. PubMed ID: 34165718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An effort to make sense of antisense transcription in bacteria.
    Lasa I; Toledo-Arana A; Gingeras TR
    RNA Biol; 2012 Aug; 9(8):1039-44. PubMed ID: 22858676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases.
    Zucchelli S; Fedele S; Vatta P; Calligaris R; Heutink P; Rizzu P; Itoh M; Persichetti F; Santoro C; Kawaji H; Lassmann T; Hayashizaki Y; Carninci P; Forrest ARR; ; Gustincich S
    Mol Neurobiol; 2019 Aug; 56(8):5392-5415. PubMed ID: 30610612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Achieving large dynamic range control of gene expression with a compact RNA transcription-translation regulator.
    Westbrook AM; Lucks JB
    Nucleic Acids Res; 2017 May; 45(9):5614-5624. PubMed ID: 28387839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Destabilization of rbcS sense transcripts by antisense RNA.
    Jiang CZ; Kliebenstein D; Ke N; Rodermel S
    Plant Mol Biol; 1994 Jun; 25(3):569-76. PubMed ID: 8049381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.