These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24217339)

  • 1. Charge transport properties of spin crossover systems.
    Ruiz E
    Phys Chem Chem Phys; 2014 Jan; 16(1):14-22. PubMed ID: 24217339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.
    Castellano M; Ruiz-García R; Cano J; Ferrando-Soria J; Pardo E; Fortea-Pérez FR; Stiriba SE; Julve M; Lloret F
    Acc Chem Res; 2015 Mar; 48(3):510-20. PubMed ID: 25697758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular spin crossover phenomenon: recent achievements and prospects.
    Bousseksou A; Molnár G; Salmon L; Nicolazzi W
    Chem Soc Rev; 2011 Jun; 40(6):3313-35. PubMed ID: 21544283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-crossover complexes in nanoscale devices: main ingredients of the molecule-substrate interactions.
    Sánchez-de-Armas R; Montenegro-Pohlhammer N; Develioglu A; Burzurí E; Calzado CJ
    Nanoscale; 2021 Nov; 13(44):18702-18713. PubMed ID: 34739026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Status and perspectives in thin films and patterning of spin crossover compounds.
    Cavallini M
    Phys Chem Chem Phys; 2012 Sep; 14(34):11867-76. PubMed ID: 22678094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The integrated spintronic functionalities of an individual high-spin state spin-crossover molecule between graphene nanoribbon electrodes.
    Zhu L; Zou F; Gao JH; Fu YS; Gao GY; Fu HH; Wu MH; Lü JT; Yao KL
    Nanotechnology; 2015 Aug; 26(31):315201. PubMed ID: 26180074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking Electronic Transport through a Spin Crossover Thin Film to the Molecular Spin State Using X-ray Absorption Spectroscopy Operando Techniques.
    Schleicher F; Studniarek M; Kumar KS; Urbain E; Katcko K; Chen J; Frauhammer T; Hervé M; Halisdemir U; Kandpal LM; Lacour D; Riminucci A; Joly L; Scheurer F; Gobaut B; Choueikani F; Otero E; Ohresser P; Arabski J; Schmerber G; Wulfhekel W; Beaurepaire E; Weber W; Boukari S; Ruben M; Bowen M
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31580-31585. PubMed ID: 30136570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase Transitions in Spin-Crossover Thin Films Probed by Graphene Transport Measurements.
    Dugay J; Aarts M; Giménez-Marqués M; Kozlova T; Zandbergen HW; Coronado E; van der Zant HS
    Nano Lett; 2017 Jan; 17(1):186-193. PubMed ID: 28073272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular actuators driven by cooperative spin-state switching.
    Shepherd HJ; Gural'skiy IA; Quintero CM; Tricard S; Salmon L; Molnár G; Bousseksou A
    Nat Commun; 2013; 4():2607. PubMed ID: 24153221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of spin-crossover temperatures in ligand-driven light-induced spin change systems.
    Cirera J; Paesani F
    Inorg Chem; 2012 Aug; 51(15):8194-201. PubMed ID: 22817277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orbital disproportionation and spin crossover as a pseudo Jahn-Teller effect.
    Garcia-Fernandez P; Bersuker IB; Boggs JE
    J Chem Phys; 2006 Sep; 125(10):104102. PubMed ID: 16999510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-decelerating relaxation of the light-induced spin states in molecular magnets Cu(hfac)2L(R) studied by electron paramagnetic resonance.
    Fedin MV; Maryunina KY; Sagdeev RZ; Ovcharenko VI; Bagryanskaya EG
    Inorg Chem; 2012 Jan; 51(1):709-17. PubMed ID: 22168483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin state switching in iron coordination compounds.
    Gütlich P; Gaspar AB; Garcia Y
    Beilstein J Org Chem; 2013; 9():342-91. PubMed ID: 23504535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced spin change by photodissociable external ligands: a new principle for magnetic switching of molecules.
    Thies S; Sell H; Schütt C; Bornholdt C; Näther C; Tuczek F; Herges R
    J Am Chem Soc; 2011 Oct; 133(40):16243-50. PubMed ID: 21888403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to Switch Spin-Crossover Metal Complexes at Constant Room Temperature.
    Khusniyarov MM
    Chemistry; 2016 Oct; 22(43):15178-15191. PubMed ID: 27529311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin Crossover Nanomaterials: From Fundamental Concepts to Devices.
    Molnár G; Rat S; Salmon L; Nicolazzi W; Bousseksou A
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29171924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-driven coordination-induced spin-state switching: rational design of photodissociable ligands.
    Thies S; Sell H; Bornholdt C; Schütt C; Köhler F; Tuczek F; Herges R
    Chemistry; 2012 Dec; 18(51):16358-68. PubMed ID: 23090862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin crossover meets diarylethenes: efficient photoswitching of magnetic properties in solution at room temperature.
    Milek M; Heinemann FW; Khusniyarov MM
    Inorg Chem; 2013 Oct; 52(19):11585-92. PubMed ID: 24063424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.