These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24217399)

  • 1. Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds.
    Colmenares JC; Luque R
    Chem Soc Rev; 2014 Feb; 43(3):765-78. PubMed ID: 24217399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring photocatalytic nanostructures for sustainable hydrogen production.
    Cargnello M; Diroll BT
    Nanoscale; 2014 Jan; 6(1):97-105. PubMed ID: 24240274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures.
    Lavorato C; Primo A; Molinari R; Garcia H
    Chemistry; 2014 Jan; 20(1):187-94. PubMed ID: 24327304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications.
    Cheng H; Huang B; Dai Y
    Nanoscale; 2014 Feb; 6(4):2009-26. PubMed ID: 24430623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-driven transformation of biomass into chemicals using photocatalysts - Vistas and challenges.
    Navakoteswara Rao V; Malu TJ; Cheralathan KK; Sakar M; Pitchaimuthu S; Rodríguez-González V; Mamatha Kumari M; Shankar MV
    J Environ Manage; 2021 Apr; 284():111983. PubMed ID: 33529884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic transformations of lignocellulosic biomass into chemicals.
    Wu X; Luo N; Xie S; Zhang H; Zhang Q; Wang F; Wang Y
    Chem Soc Rev; 2020 Sep; 49(17):6198-6223. PubMed ID: 32756629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors.
    Colmenares JC; Varma RS; Nair V
    Chem Soc Rev; 2017 Nov; 46(22):6675-6686. PubMed ID: 29034941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants.
    Colmenares JC
    ChemSusChem; 2014 Jun; 7(6):1512-27. PubMed ID: 24965345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials.
    Hong Y; Zhang J; Wang X; Wang Y; Lin Z; Yu J; Huang F
    Nanoscale; 2012 Apr; 4(9):2859-62. PubMed ID: 22456630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective aerobic oxidation mediated by TiO(2) photocatalysis.
    Lang X; Ma W; Chen C; Ji H; Zhao J
    Acc Chem Res; 2014 Feb; 47(2):355-63. PubMed ID: 24164388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.
    Kalathil S; Khan MM; Lee J; Cho MH
    Biotechnol Adv; 2013 Nov; 31(6):915-24. PubMed ID: 23680192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light.
    Zhang N; Ciriminna R; Pagliaro M; Xu YJ
    Chem Soc Rev; 2014 Aug; 43(15):5276-87. PubMed ID: 24776966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimetallic catalysts for upgrading of biomass to fuels and chemicals.
    Alonso DM; Wettstein SG; Dumesic JA
    Chem Soc Rev; 2012 Dec; 41(24):8075-98. PubMed ID: 22872312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose conversion under heterogeneous catalysis.
    Dhepe PL; Fukuoka A
    ChemSusChem; 2008; 1(12):969-75. PubMed ID: 19021143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.