BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24217947)

  • 1. The use of immobilised metal affinity chromatography (IMAC) to compare expression of copper-binding proteins in control and copper-exposed marine microalgae.
    Smith CL; Stauber JL; Wilson MR; Jolley DF
    Anal Bioanal Chem; 2014 Jan; 406(1):305-15. PubMed ID: 24217947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.
    Levy JL; Angel BM; Stauber JL; Poon WL; Simpson SL; Cheng SH; Jolley DF
    Aquat Toxicol; 2008 Aug; 89(2):82-93. PubMed ID: 18639348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity.
    Levy JL; Stauber JL; Jolley DF
    Sci Total Environ; 2007 Nov; 387(1-3):141-54. PubMed ID: 17765293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper Uptake, Intracellular Localization, and Speciation in Marine Microalgae Measured by Synchrotron Radiation X-ray Fluorescence and Absorption Microspectroscopy.
    Adams MS; Dillon CT; Vogt S; Lai B; Stauber J; Jolley DF
    Environ Sci Technol; 2016 Aug; 50(16):8827-39. PubMed ID: 27437565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of copper-binding proteins in excess copper-stressed rice roots by immobilized metal affinity chromatography and two-dimensional electrophoresis.
    Song Y; Zhang H; Chen C; Wang G; Zhuang K; Cui J; Shen Z
    Biometals; 2014 Apr; 27(2):265-76. PubMed ID: 24535191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and bioaccumulation of copper and lead in five marine microalgae.
    Debelius B; Forja JM; DelValls A; Lubián LM
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1503-13. PubMed ID: 19427695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper and zinc tolerance of two tropical microalgae after copper acclimation.
    Johnson HL; Stauber JL; Adams MS; Jolley DF
    Environ Toxicol; 2007 Jun; 22(3):234-44. PubMed ID: 17497632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters.
    Franklin NM; Stauber JL; Lim RP
    Environ Toxicol Chem; 2001 Jan; 20(1):160-70. PubMed ID: 11351404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.).
    Wilde KL; Stauber JL; Markich SJ; Franklin NM; Brown PL
    Arch Environ Contam Toxicol; 2006 Aug; 51(2):174-85. PubMed ID: 16583260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher biomolecules yield in phytoplankton under copper exposure.
    Silva JC; Echeveste P; Lombardi AT
    Ecotoxicol Environ Saf; 2018 Oct; 161():57-63. PubMed ID: 29859408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of copper ions and copper nanomaterials on the output of amino acids from marine microalgae.
    Huang W; Zhou Y; Zhao T; Tan L; Wang J
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):9780-9791. PubMed ID: 34505252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine).
    Lozano P; Trombini C; Crespo E; Blasco J; Moreno-Garrido I
    Ecotoxicol Environ Saf; 2014 Jun; 104():294-301. PubMed ID: 24726942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria.
    Götze S; Matoo OB; Beniash E; Saborowski R; Sokolova IM
    Aquat Toxicol; 2014 Apr; 149():65-82. PubMed ID: 24572072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus.
    Sun C; Li W; Xu Y; Hu N; Ma J; Cao W; Sun S; Hu C; Zhao Y; Huang Q
    Aquat Toxicol; 2020 Jul; 224():105504. PubMed ID: 32450458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effects of Nickel and Copper on Tropical Marine and Freshwater Microalgae Using Single and Multispecies Tests.
    McKnight KS; Gissi F; Adams MS; Stone S; Jolley D; Stauber J
    Environ Toxicol Chem; 2023 Apr; 42(4):901-913. PubMed ID: 36896707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis and identification of copper stress-regulated proteins in the marine alga Scytosiphon gracilis (Phaeophyceae).
    Contreras L; Moenne A; Gaillard F; Potin P; Correa JA
    Aquat Toxicol; 2010 Jan; 96(2):85-9. PubMed ID: 19896729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses.
    Hamed SM; Selim S; Klöck G; AbdElgawad H
    Ecotoxicol Environ Saf; 2017 Oct; 144():19-25. PubMed ID: 28599127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of bacteria on the sensitivity of microalgae to copper in laboratory bioassays.
    Levy JL; Stauber JL; Wakelin SA; Jolley DF
    Chemosphere; 2009 Mar; 74(9):1266-74. PubMed ID: 19101014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependency of copper toxicity to polychaete larvae on algal concentration.
    Wong NC; Wong MH; Shiu KK; Qiu JW
    Aquat Toxicol; 2006 May; 77(2):117-25. PubMed ID: 16356560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum.
    Zhang C; Chen X; Tan L; Wang J
    Environ Sci Pollut Res Int; 2018 May; 25(13):13127-13133. PubMed ID: 29488203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.