BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24217972)

  • 1. A short-term study to evaluate the uptake and accumulation of arsenic in Asian willow (Salix sp.) from arsenic-contaminated water.
    Chen G; Zou X; Zhou Y; Zhang J; Owens G
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3275-84. PubMed ID: 24217972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth, physiological responses, and copper accumulation in seven willow species exposed to Cu-a hydroponic experiment.
    Cao Y; Zhang Y; Ma C; Li H; Zhang J; Chen G
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19875-19886. PubMed ID: 29737488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead.
    Wang S; Shi X; Sun H; Chen Y; Pan H; Yang X; Rafiq T
    PLoS One; 2014; 9(9):e108568. PubMed ID: 25268840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake.
    Purdy JJ; Smart LB
    Int J Phytoremediation; 2008; 10(6):515-28. PubMed ID: 19260230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow.
    Yu XZ; Gu JD
    Environ Sci Pollut Res Int; 2008 Sep; 15(6):499-508. PubMed ID: 18719961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative response of arsenic uptake, speciation and detoxification by Salix atrocinerea.
    Navazas A; Hendrix S; Cuypers A; González A
    Sci Total Environ; 2019 Nov; 689():422-433. PubMed ID: 31279189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows.
    Yu XZ; Gu JD; Xing LQ
    Ecotoxicology; 2008 Nov; 17(8):747-55. PubMed ID: 18470609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium and copper uptake and translocation in five willow (Salix L.) species.
    Kuzovkina YA; Knee M; Quigley MF
    Int J Phytoremediation; 2004; 6(3):269-87. PubMed ID: 15554478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and efficiency of nutrient removal by Salix jiangsuensis J172 for phytoremediation of urban wastewater.
    Shi X; Sun H; Pan H; Chen Y; Jiang Z; Liu J; Wang S
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2715-23. PubMed ID: 26438370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of 2,4-dichlorophenol in hydroponic solution by four Salix matsudana clones.
    Shi X; Leng H; Hu Y; Liu Y; Duan H; Sun H; Chen Y
    Ecotoxicol Environ Saf; 2012 Dec; 86():125-31. PubMed ID: 23031587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture.
    Iori V; Zacchini M; Pietrini F
    J Hazard Mater; 2013 Nov; 262():796-804. PubMed ID: 24140530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.
    Yu XZ; Gu JD
    Arch Environ Contam Toxicol; 2007 May; 52(4):503-11. PubMed ID: 17380236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of chlorpyrifos by Populus and Salix.
    Lee KY; Strand SE; Doty SL
    Int J Phytoremediation; 2012 Jan; 14(1):48-61. PubMed ID: 22567694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of growth and photosynthesis to alkaline stress in three willow species.
    Qiao S; Ma C; Li H; Zhang Y; Zhang M; Zhao W; Liu B
    Sci Rep; 2024 Jun; 14(1):14672. PubMed ID: 38918471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (J.F. Gmel) S.F Blake as a hyperaccumulator.
    Islam MS; Ueno Y; Sikder MT; Kurasaki M
    Int J Phytoremediation; 2013; 15(10):1010-21. PubMed ID: 23819292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle.
    Xue PY; Yan CZ
    Chemosphere; 2011 Nov; 85(7):1176-81. PubMed ID: 22024098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans).
    Sandhi A; Landberg T; Greger M
    Environ Pollut; 2018 Jun; 237():1098-1105. PubMed ID: 29157972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study.
    Cao Y; Ma C; Zhang J; Wang S; White JC; Chen G; Xing B
    Environ Pollut; 2019 Mar; 246():980-989. PubMed ID: 31159147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.).
    Zhang X; Hu Y; Liu Y; Chen B
    J Environ Sci (China); 2011; 23(4):601-6. PubMed ID: 21793402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L.
    Borišev M; Pajević S; Nikolić N; Orlović S; Župunski M; Pilipović A; Kebert M
    Int J Phytoremediation; 2016; 18(2):164-70. PubMed ID: 26247775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.