BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24217977)

  • 1. Reciprocal interactions between the human thalamus and periaqueductal gray may be important for pain perception.
    Wu D; Wang S; Stein JF; Aziz TZ; Green AL
    Exp Brain Res; 2014 Feb; 232(2):527-34. PubMed ID: 24217977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain.
    Pereira EA; Lu G; Wang S; Schweder PM; Hyam JA; Stein JF; Paterson DJ; Aziz TZ; Green AL
    Exp Neurol; 2010 Jun; 223(2):574-81. PubMed ID: 20178783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory thalamus and periaqueductal grey area local field potential signals during bladder filling.
    Roy HA; Aziz TZ; Green AL
    J Clin Neurosci; 2019 Oct; 68():342-343. PubMed ID: 31331745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two forms of inhibition of spinothalamic tract neurons produced by stimulation of the periaqueductal gray and the cerebral cortex.
    Zhang DX; Owens CM; Willis WD
    J Neurophysiol; 1991 Jun; 65(6):1567-79. PubMed ID: 1875263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of local field potentials correlate with pain relief by deep brain stimulation.
    Huang Y; Luo H; Green AL; Aziz TZ; Wang S
    Clin Neurophysiol; 2016 Jul; 127(7):2573-80. PubMed ID: 27291876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential control of hypothalamically elicited flight behavior by the midbrain periaqueductal gray in the cat.
    Brutus M; Shaikh MB; Siegel A
    Behav Brain Res; 1985 Oct; 17(3):235-44. PubMed ID: 4084394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deafferentation pain and stimulation of the thalamic sensory relay nucleus: clinical and experimental study.
    Tsubokawa T; Katayama Y; Yamamoto T; Hirayama T
    Appl Neurophysiol; 1985; 48(1-6):166-71. PubMed ID: 3017207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential inhibitory mechanisms in VPL versus intralaminar nociceptive neurons of the cat: I. Effects of periaqueductal gray stimulation.
    Koyama N; Nishikawa Y; Chua AT; Iwamoto M; Yokota T
    Jpn J Physiol; 1995; 45(6):1005-27. PubMed ID: 8676571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation.
    Huang Y; Green AL; Hyam J; Fitzgerald J; Aziz TZ; Wang S
    Neurobiol Dis; 2018 Jan; 109(Pt A):117-126. PubMed ID: 29031639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. fMRI pain activation in the periaqueductal gray in healthy volunteers during the cold pressor test.
    La Cesa S; Tinelli E; Toschi N; Di Stefano G; Collorone S; Aceti A; Francia A; Cruccu G; Truini A; Caramia F
    Magn Reson Imaging; 2014 Apr; 32(3):236-40. PubMed ID: 24468081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: possible pathways for antinociception.
    Pagano RL; Fonoff ET; Dale CS; Ballester G; Teixeira MJ; Britto LRG
    Pain; 2012 Dec; 153(12):2359-2369. PubMed ID: 23017297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurophysiological characteristics in the periventricular/periaqueductal gray correlate with pain perception, sensation, and affect in neuropathic pain patients.
    Luo H; Huang Y; Green AL; Aziz TZ; Xiao X; Wang S
    Neuroimage Clin; 2021; 32():102876. PubMed ID: 34775163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain.
    Cheriyan J; Sheets PL
    J Neurosci; 2018 May; 38(20):4829-4839. PubMed ID: 29695413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep brain stimulation for intractable neuropathic facial pain.
    Ben-Haim S; Mirzadeh Z; Rosenberg WS
    Neurosurg Focus; 2018 Aug; 45(2):E15. PubMed ID: 30064325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep brain stimulation for pain relief: a meta-analysis.
    Bittar RG; Kar-Purkayastha I; Owen SL; Bear RE; Green A; Wang S; Aziz TZ
    J Clin Neurosci; 2005 Jun; 12(5):515-9. PubMed ID: 15993077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections.
    Mantyh PW
    J Neurophysiol; 1983 Mar; 49(3):567-81. PubMed ID: 6300350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of conditioning periaqueductal gray stimulation on responses of thalamic nociceptive neurons to tooth pulp stimulation.
    Ishii T; Nishikawa Y
    J Osaka Dent Univ; 1999 Apr; 33(1):9-21. PubMed ID: 10863471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans.
    Sims-Williams H; Matthews JC; Talbot PS; Love-Jones S; Brooks JC; Patel NK; Pickering AE
    Neuroimage; 2017 Feb; 146():833-842. PubMed ID: 27554530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray.
    Hayashi H; Sumino R; Sessle BJ
    J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat.
    Krout KE; Loewy AD
    J Comp Neurol; 2000 Aug; 424(1):111-41. PubMed ID: 10888743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.