These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24218155)

  • 1. A role for the polarity complex and PI3 kinase in branch formation within retinotectal arbors of zebrafish.
    Schmidt JT; Mariconda L; Morillo F; Apraku E
    Dev Neurobiol; 2014 Jun; 74(6):591-601. PubMed ID: 24218155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition.
    Schmidt JT; Buzzard M; Borress R; Dhillon S
    J Neurobiol; 2000 Feb; 42(3):303-14. PubMed ID: 10645970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish.
    Leu B; Koch E; Schmidt JT
    Dev Neurobiol; 2010 Nov; 70(13):897-911. PubMed ID: 20669323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors.
    Leu BH; Schmidt JT
    Dev Neurobiol; 2008 Jan; 68(1):18-30. PubMed ID: 17918241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.
    Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP
    J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening.
    Schmidt JT; Buzzard M
    J Neurobiol; 1993 Mar; 24(3):384-99. PubMed ID: 7684064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization.
    Hapak SM; Rothlin CV; Ghosh S
    Cell Mol Life Sci; 2018 Aug; 75(15):2735-2761. PubMed ID: 29696344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors.
    Witte S; Stier H; Cline HT
    J Neurobiol; 1996 Oct; 31(2):219-34. PubMed ID: 8885202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection.
    Cline HT; Constantine-Paton M
    J Neurosci; 1990 Apr; 10(4):1197-216. PubMed ID: 2158526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KIBRA suppresses apical exocytosis through inhibition of aPKC kinase activity in epithelial cells.
    Yoshihama Y; Sasaki K; Horikoshi Y; Suzuki A; Ohtsuka T; Hakuno F; Takahashi S; Ohno S; Chida K
    Curr Biol; 2011 Apr; 21(8):705-11. PubMed ID: 21497093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons.
    Kaethner RJ; Stuermer CA
    J Neurosci; 1992 Aug; 12(8):3257-71. PubMed ID: 1494955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth behavior of retinotectal axons in live zebrafish embryos under TTX-induced neural impulse blockade.
    Kaethner RJ; Stuermer CA
    J Neurobiol; 1994 Jul; 25(7):781-96. PubMed ID: 8089656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of synaptic vesicle proteins within single retinotectal axons of Xenopus tadpoles.
    Pinches EM; Cline HT
    J Neurobiol; 1998 Jun; 35(4):426-34. PubMed ID: 9624623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
    Hu B; Nikolakopoulou AM; Cohen-Cory S
    Development; 2005 Oct; 132(19):4285-98. PubMed ID: 16141221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission.
    O'Rourke NA; Cline HT; Fraser SE
    Neuron; 1994 Apr; 12(4):921-34. PubMed ID: 8161460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-kinase manipulations disrupt activity-driven retinotopic sharpening in regenerating goldfish retinotectal projection.
    Schmidt JT
    J Neurobiol; 1994 May; 25(5):555-70. PubMed ID: 8071660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3-kinase) as Par3 partners by proteomic analysis.
    Itoh N; Nakayama M; Nishimura T; Fujisue S; Nishioka T; Watanabe T; Kaibuchi K
    Cytoskeleton (Hoboken); 2010 May; 67(5):297-308. PubMed ID: 20191563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-driven sharpening of the retinotectal projection: the search for retrograde synaptic signaling pathways.
    Schmidt JT
    J Neurobiol; 2004 Apr; 59(1):114-33. PubMed ID: 15007831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.