BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24218829)

  • 1. Comparison of different phosphate species adsorption by ferric and alum water treatment residuals.
    Gao S; Wang C; Pei Y
    J Environ Sci (China); 2013 May; 25(5):986-92. PubMed ID: 24218829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characteristics of orthophosphate adsorption on ferric-alum residuals (FARs) from drinking water treatment plant].
    Wang CH; Pei YS
    Huan Jing Ke Xue; 2011 Aug; 32(8):2371-7. PubMed ID: 22619965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics and kinetics of phosphate adsorption on dewatered ferric-alum residuals.
    Wang C; Guo W; Tian B; Pei Y; Zhang K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1632-9. PubMed ID: 22092260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effectiveness of arsenite adsorption by ferric and alum water treatment residuals with different grain sizes].
    Lin L; Xu JR; Wu H; Wang CH; Pei YS
    Huan Jing Ke Xue; 2013 Jul; 34(7):2758-65. PubMed ID: 24028010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residuals.
    Wang C; Wang Z; Lin L; Tian B; Pei Y
    J Hazard Mater; 2012 Feb; 203-204():145-50. PubMed ID: 22192585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus treatment of secondary municipal effluent using oven-dried alum residual.
    Mortula MM; Gagnon GA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Sep; 42(11):1685-91. PubMed ID: 17849312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate adsorption on dried alum sludge: Modeling and application to treatment of dairy effluents.
    Djekoune L; Maaliou A; Salem Z; Ziani D; Kamel R; Ouakouak A; Baigenzhenov O; Bokov DO; Ivanets A; Hosseini-Bandegharaei A
    Environ Res; 2024 Jul; 252(Pt 3):118976. PubMed ID: 38705451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The removal of hydrogen sulfide in solution by ferric and alum water treatment residuals.
    Wang C; Pei Y
    Chemosphere; 2012 Aug; 88(10):1178-83. PubMed ID: 22520971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater.
    Cui G; Liu M; Chen Y; Zhang W; Zhao J
    Carbohydr Polym; 2016 Dec; 154():40-7. PubMed ID: 27577894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling Fe(III)/Cr(III) hydroxide, an industrial solid waste for the removal of phosphate from water.
    Namasivayam C; Prathap K
    J Hazard Mater; 2005 Aug; 123(1-3):127-34. PubMed ID: 15955623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents.
    Shanableh AM; Elsergany MM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(2):223-31. PubMed ID: 23043345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble phosphorus removal through adsorption on spent alum sludge.
    Georgantas DA; Matsis VM; Grigoropoulou HP
    Environ Technol; 2006 Oct; 27(10):1081-8. PubMed ID: 17144257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of excess fluoride from water using waste residue from alum manufacturing process.
    Nigussie W; Zewge F; Chandravanshi BS
    J Hazard Mater; 2007 Aug; 147(3):954-63. PubMed ID: 17363157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids.
    Gibbons MK; Gagnon GA
    Water Res; 2010 Nov; 44(19):5740-9. PubMed ID: 20663534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings.
    Zeng L; Li X; Liu J
    Water Res; 2004 Mar; 38(5):1318-26. PubMed ID: 14975665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of anionic dyes on to waste Fe (III)/Cr (III).
    Namasivayam C; Sumithra S
    J Environ Sci Eng; 2006 Jan; 48(1):69-74. PubMed ID: 17913206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal.
    Chowdhury SR; Yanful EK
    J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant.
    Cao D; Jin X; Gan L; Wang T; Chen Z
    Chemosphere; 2016 Sep; 159():23-31. PubMed ID: 27268791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals.
    Wang W; Ma C; Zhang Y; Yang S; Shao Y; Wang X
    J Environ Sci (China); 2016 Jul; 45():191-9. PubMed ID: 27372133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and recovery of phosphate from water by calcium-silicate composites-novel adsorbents made from waste glass and shells.
    Jiang D; Amano Y; Machida M
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8210-8218. PubMed ID: 28155067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.