BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24218904)

  • 21. Predicting Air Traffic Controller Workload: Trajectory Uncertainty as the Moderator of the Indirect Effect of Traffic Density on Controller Workload Through Traffic Conflict.
    Corver SC; Unger D; Grote G
    Hum Factors; 2016 Jun; 58(4):560-73. PubMed ID: 27076095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporating data link messaging into a multi-function display to support the Small Aircraft Transportation System (SATS) and the self-separation of general aviation aircraft.
    Adams CA; Murdoch JL; Consiglio MC; Williams DM
    Appl Ergon; 2007 Jul; 38(4):465-71. PubMed ID: 17512491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dimensions of air traffic control tower information needs: from information requests to display design.
    Durso FT; Johnson BR; Crutchfield JM
    J Exp Psychol Appl; 2010 Sep; 16(3):219-37. PubMed ID: 20853983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Remembering to execute deferred tasks in simulated air traffic control: The impact of interruptions.
    Wilson MD; Farrell S; Visser TAW; Loft S
    J Exp Psychol Appl; 2018 Sep; 24(3):360-379. PubMed ID: 30047752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using multisensory cues to facilitate air traffic management.
    Ngo MK; Pierce RS; Spence C
    Hum Factors; 2012 Dec; 54(6):1093-103. PubMed ID: 23397817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of conflict alerting system reliability and task difficulty on pilots' conflict detection with cockpit display of traffic information.
    Xu X; Wickens CD; Rantanen EM
    Ergonomics; 2007 Jan; 50(1):112-30. PubMed ID: 17178655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cognitive process modelling of controllers in en route air traffic control.
    Inoue S; Furuta K; Nakata K; Kanno T; Aoyama H; Brown M
    Ergonomics; 2012; 55(4):450-64. PubMed ID: 22423677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changing the role of the air traffic controller: how will free flight affect memory for spatial events?
    Nicholls AP; Melia A; Farmer EW; Shaw G; Milne T; Stedmon A; Sharples S; Cox G
    Appl Ergon; 2007 Jul; 38(4):457-63. PubMed ID: 17451635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of Spatial Orientation Ability on Air Traffic Conflict Detection in a Simulated Free Route Airspace Environment.
    Zhong JY; Goh SK; Woo CJ; Alam S
    Front Hum Neurosci; 2022; 16():739866. PubMed ID: 35463929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-task performance consequences of imperfect alerting associated with a cockpit display of traffic information.
    Wickens C; Colcombe A
    Hum Factors; 2007 Oct; 49(5):839-50. PubMed ID: 17915602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Difficulty to Break a Relational Complexity Network Can Predict Air Traffic Controllers' Mental Workload and Performance in Conflict Resolution.
    Zhang J; E X; Du F; Yang J; Loft S
    Hum Factors; 2021 Mar; 63(2):240-253. PubMed ID: 31618105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. False alerts in air traffic control conflict alerting system: is there a "cry wolf" effect?
    Wickens CD; Rice S; Keller D; Hutchins S; Hughes J; Clayton K
    Hum Factors; 2009 Aug; 51(4):446-62. PubMed ID: 19899356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fuzzy signal detection theory: analysis of human and machine performance in air traffic control, and analytic considerations.
    Masalonis AJ; Parasuraman R
    Ergonomics; 2003 Sep; 46(11):1045-74. PubMed ID: 12850931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benefits of Imperfect Conflict Resolution Advisory Aids for Future Air Traffic Control.
    Trapsilawati F; Wickens CD; Qu X; Chen CH
    Hum Factors; 2016 Nov; 58(7):1007-1019. PubMed ID: 27422153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From trees to forest: relational complexity network and workload of air traffic controllers.
    Zhang J; Yang J; Wu C
    Ergonomics; 2015; 58(8):1320-36. PubMed ID: 25677762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using memory for prior aircraft events to detect conflicts under conditions of proactive air traffic control and with concurrent task requirements.
    Bowden VK; Loft S
    J Exp Psychol Appl; 2016 Jun; 22(2):211-24. PubMed ID: 27295467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An evidence accumulation model for conflict detection performance in a simulated air traffic control task.
    Neal A; Kwantes PJ
    Hum Factors; 2009 Apr; 51(2):164-80. PubMed ID: 19653481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The controller, aviation medicine and air safety.
    Watkin BL
    Aviat Space Environ Med; 1983 Mar; 54(3):263-5. PubMed ID: 6847565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human factors in air traffic control: problems at the interfaces.
    Shouksmith G
    Percept Mot Skills; 2003 Oct; 97(2):533-6. PubMed ID: 14620241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling cognitive processes of experienced air traffic controllers.
    Niessen C; Eyferth K; Bierwagen T
    Ergonomics; 1999 Nov; 42(11):1507-20. PubMed ID: 10582037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.