These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24218905)

  • 1. Coadaptive aiding and automation enhance operator performance.
    Christensen JC; Estepp JR
    Hum Factors; 2013 Oct; 55(5):965-75. PubMed ID: 24218905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding.
    Wilson GF; Russell CA
    Hum Factors; 2007 Dec; 49(6):1005-18. PubMed ID: 18074700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation.
    Bailey NR; Scerbo MW; Freeman FG; Mikulka PJ; Scott LA
    Hum Factors; 2006; 48(4):693-709. PubMed ID: 17240718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of adaptive task allocation on monitoring of automated systems.
    Parasuraman R; Mouloua M; Molloy R
    Hum Factors; 1996 Dec; 38(4):665-79. PubMed ID: 11536753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control.
    Miller CA; Parasuraman R
    Hum Factors; 2007 Feb; 49(1):57-75. PubMed ID: 17315844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.
    McKendrick R; Shaw T; de Visser E; Saqer H; Kidwell B; Parasuraman R
    Hum Factors; 2014 May; 56(3):463-75. PubMed ID: 24930169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive automation of human-machine system information-processing functions.
    Kaber DB; Wright MC; Prinzel LJ; Clamann MP
    Hum Factors; 2005; 47(4):730-41. PubMed ID: 16553062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a psychophysiological system for adaptive automation on performance, workload, and the event-related potential P300 component.
    Prinzel LJ; Freeman FG; Scerbo MW; Mikulka PJ; Pope AT
    Hum Factors; 2003 winter; 45(4):601-13. PubMed ID: 15055457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of automated decision aids on performance, operator behaviour and workload in a simulated supervisory control task.
    Röttger S; Bali K; Manzey D
    Ergonomics; 2009 May; 52(5):512-23. PubMed ID: 19296323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Level of automation effects on performance, situation awareness and workload in a dynamic control task.
    Endsley MR; Kaber DB
    Ergonomics; 1999 Mar; 42(3):462-92. PubMed ID: 10048306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-automation interaction for multiple robot control: the effect of varying automation assistance and individual differences on operator performance.
    Wright JL; Chen JYC; Barnes MJ
    Ergonomics; 2018 Aug; 61(8):1033-1045. PubMed ID: 29451105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting performance on a target monitoring task employing an automatic tracker.
    McFadden SM; Vimalachandran A; Blackmore E
    Ergonomics; 2004 Feb; 47(3):257-80. PubMed ID: 14668161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmenting Human Performance in Remotely Piloted Aircraft.
    Gruenwald CM; Middendorf MS; Hoepf MR; Galster SM
    Aerosp Med Hum Perform; 2018 Feb; 89(2):115-121. PubMed ID: 29463356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework for managing system disturbances and insights from air traffic management.
    Shorrock ST; Straeter O
    Ergonomics; 2006 Oct 10-22; 49(12-13):1326-44. PubMed ID: 17008259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing operator capacity estimates for supervisory control of autonomous vehicles.
    Cummings ML; Guerlain S
    Hum Factors; 2007 Feb; 49(1):1-15. PubMed ID: 17315838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining electrodermal responses and cardiovascular measures for probing adaptive automation during simulated flight.
    Haarmann A; Boucsein W; Schaefer F
    Appl Ergon; 2009 Nov; 40(6):1026-40. PubMed ID: 19520358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Return-to-Manual Performance can be Predicted Before Automation Fails.
    Griffiths N; Bowden V; Wee S; Loft S
    Hum Factors; 2024 May; 66(5):1333-1349. PubMed ID: 36538745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent Agent Transparency in Human-Agent Teaming for Multi-UxV Management.
    Mercado JE; Rupp MA; Chen JY; Barnes MJ; Barber D; Procci K
    Hum Factors; 2016 May; 58(3):401-15. PubMed ID: 26867556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Petri net-based modelling of human-automation conflicts in aviation.
    Pizziol S; Tessier C; Dehais F
    Ergonomics; 2014; 57(3):319-31. PubMed ID: 24444329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overload and automation-dependence in a multi-UAS simulation: Task demand and individual difference factors.
    Lin J; Matthews G; Wohleber RW; Funke GJ; Calhoun GL; Ruff HA; Szalma J; Chiu P
    J Exp Psychol Appl; 2020 Jun; 26(2):218-235. PubMed ID: 31621357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.