BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24219111)

  • 21. Flavonoids from the buds of Rosa damascena inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme.
    Kwon EK; Lee DY; Lee H; Kim DO; Baek NI; Kim YE; Kim HY
    J Agric Food Chem; 2010 Jan; 58(2):882-6. PubMed ID: 20038104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide inhibitors and the active site(s) of angiotensin converting enzyme.
    Riordan JF; Chen YN; Kleemann SG; Bünning P
    Biomed Biochim Acta; 1991; 50(4-6):809-14. PubMed ID: 1666286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Procyanidin structure defines the extent and specificity of angiotensin I converting enzyme inhibition.
    Ottaviani JI; Actis-Goretta L; Villordo JJ; Fraga CG
    Biochimie; 2006; 88(3-4):359-65. PubMed ID: 16330143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of angiotensin I-converting enzyme (ACE) inhibition by rice dregs hydrolysates using response surface methodology.
    He GQ; Xuan GD; Ruan H; Chen QH; Xu Y
    J Zhejiang Univ Sci B; 2005 Jun; 6(6):508-13. PubMed ID: 15909335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size of the aliphatic chain of sodium houttuyfonate analogs determines their affinity for renin and angiotensin I converting enzyme.
    Yuan L; Wu J; Aluko RE
    Int J Biol Macromol; 2007 Aug; 41(3):274-80. PubMed ID: 17467790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel ketomethylene inhibitors of angiotensin I-converting enzyme (ACE): inhibition and molecular modelling.
    Redelinghuys P; Nchinda AT; Chibale K; Sturrock ED
    Biol Chem; 2006 Apr; 387(4):461-6. PubMed ID: 16606345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and evaluation of novel triazoles and mannich bases functionalized 1,4-dihydropyridine as angiotensin converting enzyme (ACE) inhibitors.
    Kumbhare RM; Kosurkar UB; Bagul PK; Kanwal A; Appalanaidu K; Dadmal TL; Banerjee SK
    Bioorg Med Chem; 2014 Nov; 22(21):5824-30. PubMed ID: 25300819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of human ACE gives new insights into inhibitor binding and design.
    Brew K
    Trends Pharmacol Sci; 2003 Aug; 24(8):391-4. PubMed ID: 12915047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on the Interaction between Angiotensin-Converting Enzyme (ACE) and ACE Inhibitory Peptide from Saurida elongata.
    Lan X; Sun L; Muhammad Y; Wang Z; Liu H; Sun J; Zhou L; Feng X; Liao D; Wang S
    J Agric Food Chem; 2018 Dec; 66(51):13414-13422. PubMed ID: 30511571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean.
    McCue P; Kwon YI; Shetty K
    Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential Angiotensin Converting Enzyme Inhibitors from Moringa oleifera.
    Khan H; Jaiswal V; Kulshreshtha S; Khan A
    Recent Pat Biotechnol; 2019; 13(3):239-248. PubMed ID: 30747089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A computational approach to the study of the binding mode of dual ACE/NEP inhibitors.
    Dimitropoulos N; Papakyriakou A; Dalkas GA; Sturrock ED; Spyroulias GA
    J Chem Inf Model; 2010 Mar; 50(3):388-96. PubMed ID: 20170101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytochemical screening and evaluation of in vitro angiotensin-converting enzyme inhibitory activity of Artocarpus altilis leaf.
    Siddesha JM; Angaswamy N; Vishwanath BS
    Nat Prod Res; 2011 Dec; 25(20):1931-40. PubMed ID: 21756104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Quantitative Structure-Activity Relationship Model for Angiotensin-Converting Enzyme Inhibitory Dipeptides Based on Integrated Descriptors.
    Deng B; Ni X; Zhai Z; Tang T; Tan C; Yan Y; Deng J; Yin Y
    J Agric Food Chem; 2017 Nov; 65(44):9774-9781. PubMed ID: 28984136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycosides and amino acyl esters of carbohydrates as potent inhibitors of angiotensin converting enzyme.
    Lohith K; Vijayakumar GR; Somashekar BR; Sivakumar R; Divakar S
    Eur J Med Chem; 2006 Sep; 41(9):1059-72. PubMed ID: 16730392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme.
    Wu H; Liu Y; Guo M; Xie J; Jiang X
    J Food Sci; 2014 Sep; 79(9):C1635-42. PubMed ID: 25154376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and molecular docking study of novel angiotensin-converting enzyme inhibitory peptides from Salmo salar using in silico methods.
    Yu Z; Chen Y; Zhao W; Li J; Liu J; Chen F
    J Sci Food Agric; 2018 Aug; 98(10):3907-3914. PubMed ID: 29369350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potent angiotensin-converting enzyme inhibitory tripeptides identified by a computer-based approach.
    Hai-Bang T; Shimizu K
    J Mol Graph Model; 2014 Sep; 53():206-211. PubMed ID: 25181455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of novel angiotensin-I-converting enzyme inhibitory peptides from protease-hydrolyzed marine shrimp Acetes chinensis.
    Hai-Lun H; Xiu-Lan C; Cai-Yun S; Yu-Zhong Z; Bai-Cheng Z
    J Pept Sci; 2006 Nov; 12(11):726-33. PubMed ID: 16981241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three angiotensin-converting enzyme inhibitors from Rabdosia coetsa.
    Li QL; Li BG; Zhang Y; Gao XP; Li CQ; Zhang GL
    Phytomedicine; 2008 May; 15(5):386-8. PubMed ID: 17977703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.