These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24219132)

  • 41. A basic residue, Lys 782, composes part of the ATP-binding site on the epidermal growth factor receptor tyrosine kinase.
    Klingbeil CK; Gill GN
    Arch Biochem Biophys; 1999 Mar; 363(1):27-32. PubMed ID: 10049496
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characteristics of the Plasmodium falciparum PK5 ATP-binding site: implications for the design of novel antimalarial agents.
    Keenan SM; Welsh WJ
    J Mol Graph Model; 2004 Jan; 22(3):241-7. PubMed ID: 14629982
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of the catalytic mechanism of pyruvate dehydrogenase kinase.
    Tovar-Méndez A; Hirani TA; Miernyk JA; Randall DD
    Arch Biochem Biophys; 2005 Feb; 434(1):159-68. PubMed ID: 15629119
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif.
    Håkansson KO
    Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1181-6. PubMed ID: 19923713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates.
    Dondelinger Y; Declercq W; Montessuit S; Roelandt R; Goncalves A; Bruggeman I; Hulpiau P; Weber K; Sehon CA; Marquis RW; Bertin J; Gough PJ; Savvides S; Martinou JC; Bertrand MJ; Vandenabeele P
    Cell Rep; 2014 May; 7(4):971-81. PubMed ID: 24813885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of the hexameric replicative helicase RepA of plasmid RSF1010.
    Niedenzu T; Röleke D; Bains G; Scherzinger E; Saenger W
    J Mol Biol; 2001 Feb; 306(3):479-87. PubMed ID: 11178907
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats.
    Urvoas A; Guellouz A; Valerio-Lepiniec M; Graille M; Durand D; Desravines DC; van Tilbeurgh H; Desmadril M; Minard P
    J Mol Biol; 2010 Nov; 404(2):307-27. PubMed ID: 20887736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase.
    Knighton DR; Zheng JH; Ten Eyck LF; Ashford VA; Xuong NH; Taylor SS; Sowadski JM
    Science; 1991 Jul; 253(5018):407-14. PubMed ID: 1862342
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The MLKL Channel in Necroptosis Is an Octamer Formed by Tetramers in a Dyadic Process.
    Huang D; Zheng X; Wang ZA; Chen X; He WT; Zhang Y; Xu JG; Zhao H; Shi W; Wang X; Zhu Y; Han J
    Mol Cell Biol; 2017 Mar; 37(5):. PubMed ID: 27920255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tracing the origin and evolution of pseudokinases across the tree of life.
    Kwon A; Scott S; Taujale R; Yeung W; Kochut KJ; Eyers PA; Kannan N
    Sci Signal; 2019 Apr; 12(578):. PubMed ID: 31015289
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino acid residues responsible for the recognition of dichloroacetate by pyruvate dehydrogenase kinase 2.
    Klyuyeva A; Tuganova A; Popov KM
    FEBS Lett; 2007 Jun; 581(16):2988-92. PubMed ID: 17544412
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prospects for pharmacological targeting of pseudokinases.
    Kung JE; Jura N
    Nat Rev Drug Discov; 2019 Jul; 18(7):501-526. PubMed ID: 30850748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct Activation of Human MLKL by a Select Repertoire of Inositol Phosphate Metabolites.
    McNamara DE; Dovey CM; Hale AT; Quarato G; Grace CR; Guibao CD; Diep J; Nourse A; Cai CR; Wu H; Kalathur RC; Green DR; York JD; Carette JE; Moldoveanu T
    Cell Chem Biol; 2019 Jun; 26(6):863-877.e7. PubMed ID: 31031142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles.
    Paul A; Subhadarshini S; Srinivasan N
    Proteins; 2022 Mar; 90(3):747-764. PubMed ID: 34708889
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The crystal structure of pseudokinase PEAK1 (Sugen kinase 269) reveals an unusual catalytic cleft and a novel mode of kinase fold dimerization.
    Ha BH; Boggon TJ
    J Biol Chem; 2018 Feb; 293(5):1642-1650. PubMed ID: 29212708
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal coordination in kinases and pseudokinases.
    Knape MJ; Herberg FW
    Biochem Soc Trans; 2017 Jun; 45(3):653-663. PubMed ID: 28620027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleotide-binding mechanisms in pseudokinases.
    Hammarén HM; Virtanen AT; Silvennoinen O
    Biosci Rep; 2015 Nov; 36(1):e00282. PubMed ID: 26589967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay.
    Lucet IS; Murphy JM
    Methods Mol Biol; 2017; 1636():91-104. PubMed ID: 28730475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pseudokinases: Prospects for expanding the therapeutic targets armamentarium.
    Devang N; Pani A; Rajanikant GK
    Adv Protein Chem Struct Biol; 2021; 124():121-185. PubMed ID: 33632464
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Allosteric protein kinase regulation by pseudokinases: insights from STRAD.
    Rajakulendran T; Sicheri F
    Sci Signal; 2010 Mar; 3(111):pe8. PubMed ID: 20197543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.