BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24219156)

  • 21. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies.
    Zhou M; Li X; Wang B; Zhang Y; Ning J; Xiao Z; Zhang X; Chang Y; Zhi L
    Nano Lett; 2015 Sep; 15(9):6222-8. PubMed ID: 26308100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.
    Cao Y; Li X; Aksay IA; Lemmon J; Nie Z; Yang Z; Liu J
    Phys Chem Chem Phys; 2011 May; 13(17):7660-5. PubMed ID: 21448499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery.
    Cao Y; Fang D; Liu R; Jiang M; Zhang H; Li G; Luo Z; Liu X; Xu J; Xu W; Xiong C
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27685-93. PubMed ID: 26610426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications.
    Zhu X; Zhang P; Xu S; Yan X; Xue Q
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11665-74. PubMed ID: 24978598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly robust silicon nanowire/graphene core-shell electrodes without polymeric binders.
    Lee SE; Kim HJ; Kim H; Park JH; Choi DG
    Nanoscale; 2013 Oct; 5(19):8986-91. PubMed ID: 23760363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ fabrication of porous graphene electrodes for high-performance energy storage.
    Wang ZL; Xu D; Wang HG; Wu Z; Zhang XB
    ACS Nano; 2013 Mar; 7(3):2422-30. PubMed ID: 23383862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance.
    Li M; Pan F; Choo ES; Lv Y; Chen Y; Xue J
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6972-81. PubMed ID: 26926985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.
    Yuan FW; Yang HJ; Tuan HY
    ACS Nano; 2012 Nov; 6(11):9932-42. PubMed ID: 23043347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced Graphene-Wrapped MnO2 Nanowires Self-Inserted with Co3 O4 Nanocages: Remarkable Enhanced Performances for Lithium-Ion Anode Applications.
    Zhu Q; Li Y; Gao Y; Wang X; Song S
    Chemistry; 2016 May; 22(20):6876-80. PubMed ID: 27071726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries.
    Fan ZJ; Yan J; Wei T; Ning GQ; Zhi LJ; Liu JC; Cao DX; Wang GL; Wei F
    ACS Nano; 2011 Apr; 5(4):2787-94. PubMed ID: 21425865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance.
    Sun Z; Ai W; Liu J; Qi X; Wang Y; Zhu J; Zhang H; Yu T
    Nanoscale; 2014 Jun; 6(12):6563-8. PubMed ID: 24796419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental-Friendly and Facile Synthesis of Co
    Xu Z; Liu W; Yang Y; Sun L; Deng Y; Liao L
    Nanoscale Res Lett; 2017 Dec; 12(1):615. PubMed ID: 29214561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance.
    Zhao X; Hu C; Cao M
    Chem Asian J; 2013 Nov; 8(11):2701-7. PubMed ID: 23946108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries.
    Cao X; Shi Y; Shi W; Rui X; Yan Q; Kong J; Zhang H
    Small; 2013 Oct; 9(20):3433-8. PubMed ID: 23637090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries.
    Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS(2) /graphene composites.
    Wang YX; Chou SL; Wexler D; Liu HK; Dou SX
    Chemistry; 2014 Jul; 20(31):9607-12. PubMed ID: 24988995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes.
    Li W; Wang X; Liu B; Luo S; Liu Z; Hou X; Xiang Q; Chen D; Shen G
    Chemistry; 2013 Jun; 19(26):8650-6. PubMed ID: 23657868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.