These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24219761)

  • 1. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.
    Idili A; Plaxco KW; Vallée-Bélisle A; Ricci F
    ACS Nano; 2013 Dec; 7(12):10863-9. PubMed ID: 24219761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study.
    Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J
    J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology.
    Chandrasekaran AR; Rusling DA
    Nucleic Acids Res; 2018 Feb; 46(3):1021-1037. PubMed ID: 29228337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of high sequence selectivity: a stopped-flow kinetics study of DNA/RNA hybridization by duplex- and triplex-forming oligonucleotides.
    Wang S; Friedman AE; Kool ET
    Biochemistry; 1995 Aug; 34(30):9774-84. PubMed ID: 7542923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.
    Miyoshi D; Nakamura K; Tateishi-Karimata H; Ohmichi T; Sugimoto N
    J Am Chem Soc; 2009 Mar; 131(10):3522-31. PubMed ID: 19236045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
    Takahashi S; Sugimoto N
    Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic, kinetic, and conformational properties of a parallel intermolecular DNA triplex containing 5' and 3' junctions.
    Asensio JL; Dosanjh HS; Jenkins TC; Lane AN
    Biochemistry; 1998 Oct; 37(43):15188-98. PubMed ID: 9790683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable pH-triggered DNA nanoswitches.
    Idili A; Vallée-Bélisle A; Ricci F
    J Am Chem Soc; 2014 Apr; 136(16):5836-9. PubMed ID: 24716858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds.
    François JC; Hélène C
    Biochemistry; 1995 Jan; 34(1):65-72. PubMed ID: 7819224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors.
    Vallée-Bélisle A; Ricci F; Plaxco KW
    Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13802-7. PubMed ID: 19666496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Landscape and Pathways for Transitions between Watson-Crick and Hoogsteen Base Pairing in DNA.
    Chakraborty D; Wales DJ
    J Phys Chem Lett; 2018 Jan; 9(1):229-241. PubMed ID: 29240425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity.
    Idili A; Amodio A; Vidonis M; Feinberg-Somerson J; Castronovo M; Ricci F
    Anal Chem; 2014 Sep; 86(18):9013-9. PubMed ID: 24947124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modular clamp-like mechanism to regulate the activity of nucleic-acid target-responsive nanoswitches with external activators.
    Del Grosso E; Idili A; Porchetta A; Ricci F
    Nanoscale; 2016 Oct; 8(42):18057-18061. PubMed ID: 27714163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient Hoogsteen base pairs in canonical duplex DNA.
    Nikolova EN; Kim E; Wise AA; O'Brien PJ; Andricioaei I; Al-Hashimi HM
    Nature; 2011 Feb; 470(7335):498-502. PubMed ID: 21270796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Hoogsteen dynamics on DNA recognition.
    Xu Y; McSally J; Andricioaei I; Al-Hashimi HM
    Nat Commun; 2018 Apr; 9(1):1473. PubMed ID: 29662229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA.
    Kuhn H; Demidov VV; Nielsen PE; Frank-Kamenetskii MD
    J Mol Biol; 1999 Mar; 286(5):1337-45. PubMed ID: 10064701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.