These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24219773)

  • 1. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.
    Gorski CA; Klüpfel LE; Voegelin A; Sander M; Hofstetter TB
    Environ Sci Technol; 2013; 47(23):13477-85. PubMed ID: 24219773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.
    Gorski CA; Klüpfel L; Voegelin A; Sander M; Hofstetter TB
    Environ Sci Technol; 2012 Sep; 46(17):9369-77. PubMed ID: 22827558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites.
    Gorski CA; Aeschbacher M; Soltermann D; Voegelin A; Baeyens B; Marques Fernandes M; Hofstetter TB; Sander M
    Environ Sci Technol; 2012 Sep; 46(17):9360-8. PubMed ID: 22827605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral.
    Schaefer MV; Gorski CA; Scherer MM
    Environ Sci Technol; 2011 Jan; 45(2):540-5. PubMed ID: 21138293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization.
    Soltermann D; Marques Fernandes M; Baeyens B; Dähn R; Joshi PA; Scheinost AC; Gorski CA
    Environ Sci Technol; 2014; 48(15):8688-97. PubMed ID: 24930689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes.
    Neumann A; Hofstetter TB; Lüssi M; Cirpka OA; Petit S; Schwarzenbach RP
    Environ Sci Technol; 2008 Nov; 42(22):8381-7. PubMed ID: 19068821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fomration of hydroxylated polychlorinated diphenyl ethers mediated by Structural Fe(III) in smectites.
    Wang Y; Liu C; Peng A; Gu C
    Chemosphere; 2019 Jul; 226():94-102. PubMed ID: 30921641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.
    Luan F; Liu Y; Griffin AM; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Feb; 49(3):1418-26. PubMed ID: 25565314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Structural Iron in Smectites - An Ab Initio Based X-ray Absorption Spectroscopy Study.
    Kéri A; Dähn R; Krack M; Churakov SV
    Environ Sci Technol; 2019 Jun; 53(12):6877-6886. PubMed ID: 31120750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites.
    Neumann A; Olson TL; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6969-77. PubMed ID: 23517074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites.
    Hofstetter TB; Neumann A; Schwarzenbach RP
    Environ Sci Technol; 2006 Jan; 40(1):235-42. PubMed ID: 16433357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration/expansion and cation charge compensation modulate the Brønsted basicity of distorted clay water.
    Cervini-Silva J; Larson RA; Stucki JW
    Langmuir; 2006 Mar; 22(7):2961-5. PubMed ID: 16548541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Mar; 49(6):3557-65. PubMed ID: 25723896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.
    Neumann A; Wu L; Li W; Beard BL; Johnson CM; Rosso KM; Frierdich AJ; Scherer MM
    Environ Sci Technol; 2015 Mar; 49(5):2786-95. PubMed ID: 25671351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches.
    Sander M; Hofstetter TB; Gorski CA
    Environ Sci Technol; 2015 May; 49(10):5862-78. PubMed ID: 25856208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids.
    Liu G; Qiu S; Liu B; Pu Y; Gao Z; Wang J; Jin R; Zhou J
    Sci Rep; 2017 Mar; 7():45354. PubMed ID: 28358048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of •OH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As(III) removal.
    Sun Z; Huang M; Liu C; Fang G; Chen N; Zhou D; Gao J
    Water Res; 2020 May; 174():115631. PubMed ID: 32114017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the genotoxicity of pesticides reacted with redox-modified smectite clay.
    Sorensen KC; Stucki JW; Warner RE; Wagner ED; Plewa MJ
    Environ Mol Mutagen; 2005 Oct; 46(3):174-81. PubMed ID: 15920753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.