BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24219789)

  • 1. Nanostructures and electronic properties of a high-efficiency electron-donating polymer.
    Bhatta RS; Perry DS; Tsige M
    J Phys Chem A; 2013 Nov; 117(47):12628-34. PubMed ID: 24219789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor-acceptor conjugated copolymer.
    Liu C; Yi C; Wang K; Yang Y; Bhatta RS; Tsige M; Xiao S; Gong X
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4928-35. PubMed ID: 25671670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells.
    Chen W; Xu T; He F; Wang W; Wang C; Strzalka J; Liu Y; Wen J; Miller DJ; Chen J; Hong K; Yu L; Darling SB
    Nano Lett; 2011 Sep; 11(9):3707-13. PubMed ID: 21823620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory investigation of opto-electronic properties of thieno[3,4-b]thiophene and benzodithiophene polymer and derivatives and their applications in solar cell.
    Khoshkholgh MJ; Marsusi F; Abolhassani MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():373-80. PubMed ID: 25311524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscopic features of charge generation in organic semiconductors.
    Savoie BM; Jackson NE; Chen LX; Marks TJ; Ratner MA
    Acc Chem Res; 2014 Nov; 47(11):3385-94. PubMed ID: 25051395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials.
    Patra A; Bendikov M; Chand S
    Acc Chem Res; 2014 May; 47(5):1465-74. PubMed ID: 24785408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties.
    Liang Y; Feng D; Wu Y; Tsai ST; Li G; Ray C; Yu L
    J Am Chem Soc; 2009 Jun; 131(22):7792-9. PubMed ID: 19453105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells.
    Hammond MR; Kline RJ; Herzing AA; Richter LJ; Germack DS; Ro HW; Soles CL; Fischer DA; Xu T; Yu L; Toney MF; Delongchamp DM
    ACS Nano; 2011 Oct; 5(10):8248-57. PubMed ID: 21939254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of a novel fused thiophene-thieno[3,2-b]thiophene-thiophene donor monomer and co-polymer for use in OPV and OFETs.
    Bronstein H; Ashraf RS; Kim Y; White AJ; Anthopoulos T; Song K; James D; Zhang W; McCulloch I
    Macromol Rapid Commun; 2011 Oct; 32(20):1664-8. PubMed ID: 21984557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acceptor strength on optical and electronic properties in conjugated polymers for solar applications.
    Adegoke OO; Jung IH; Orr M; Yu L; Goodson T
    J Am Chem Soc; 2015 May; 137(17):5759-69. PubMed ID: 25848675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance photovoltaic applications using solution-processed small molecules.
    Chen Y; Wan X; Long G
    Acc Chem Res; 2013 Nov; 46(11):2645-55. PubMed ID: 23902284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbazole-based polymers for organic photovoltaic devices.
    Li J; Grimsdale AC
    Chem Soc Rev; 2010 Jul; 39(7):2399-410. PubMed ID: 20571668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure theory gives insights into the higher efficiency of the PTB electron-donor polymers for organic photovoltaics in comparison with prototypical P3HT.
    Modesto-Costa L; Borges I; Aquino AJA; Lischka H
    J Chem Phys; 2018 Nov; 149(18):184905. PubMed ID: 30441933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of a novel low-bandgap polymer based on a ladder-type Heptacyclic arene consisting of outer thieno[3,2-b]thiophene units for efficient photovoltaic application.
    Xu X; Cai P; Lu Y; Choon NS; Chen J; Ong BS; Hu X
    Macromol Rapid Commun; 2013 Apr; 34(8):681-8. PubMed ID: 23495095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications.
    Carsten B; Szarko JM; Son HJ; Wang W; Lu L; He F; Rolczynski BS; Lou SJ; Chen LX; Yu L
    J Am Chem Soc; 2011 Dec; 133(50):20468-75. PubMed ID: 22077184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring porphyrin-based electron accepting materials for organic photovoltaics.
    Rawson J; Stuart AC; You W; Therien MJ
    J Am Chem Soc; 2014 Dec; 136(50):17561-9. PubMed ID: 25415459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolating the effect of torsional defects on mobility and band gap in conjugated polymers.
    Darling SB
    J Phys Chem B; 2008 Jul; 112(30):8891-5. PubMed ID: 18597518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.